c a program to calculate all the voltage drops and power dissipations in the Hermes XP3461 divider c example output follows the end statement c djm 4/18/17 implicit none real*4 Rtot, RtotMohms, Rk, Rg1, Rg2,R1,R2,R3,R4,R5,R6,R7,R8, 1R5prime, Ra,SumRodd,SumReven,Vsupply,Idiv, IdivmuA, 2Vtot_odd,Vtot_even, Vk, Vg1, Vg2, Vr1, Vr2, Vr3, Vr4, Vr5, 3Vr5prime, Vr6, Vr7, Vr8, Va, Ptot, Pk, Pg1, Pg2, Pr1, Pr2, Pr3, 4Pr4, Pr5, Pr5prime, Pr6, Pr7, Pr8, Pa, 5R0,Reff1,Reff2,Reff3,Reff4,Reff5,Reff6,Reff7,Reff8,Reffa, 6Refftot,Vchecksum c data Vsupply = 1400. !volts !internally, units are Ohms, volts, amps. Reff will be output in dimensionless form Rk = 0.2E6 Rg1 = 0.018E6 Rg2 = 0.1E6 R1 = 0.7E6 R2 = 1.148E6 R3 = 0.83E6 R4 = 0.746E6 R5 = 0.823E6 R5prime = 0.523E6 R6 = 0.981E6 R7 = 0.3005E6 R8 = 0.413E6 Ra = 0.413E6 c calculation of total resistance and divider current SumRodd = R1+R3+R5+R5prime SumReven=R2+R4+R6 Rtot = Rk + Rg1 + Rg2 + R7 + R8 + Ra + 1SumRodd*SumReven/(SumRodd+SumReven) Idiv = Vsupply/Rtot !current in A c calculation of individual resistor voltage drop and power dissipation Vk = Rk*Idiv Vg1 = Rg1*Idiv Vg2 = Rg2*Idiv Vr1 = R1*Idiv/2 Vr2 = R2*Idiv/2 Vr3 = R3*Idiv/2 Vr4 = R4*Idiv/2 Vr5 = R5*Idiv/2 Vr5prime = R5prime*Idiv/2 Vr6 = R6*Idiv/2 Vr7 = R7*Idiv Vr8 = R8*Idiv Va = Ra*Idiv Vtot_odd = Vk+Vg1+Vg2+Vr1+Vr3+Vr5+Vr5prime+Vr7+Vr8+Va Vtot_even = Vk+Vg1+Vg2+Vr2+Vr4+Vr6+Vr7+Vr8+Va Pk = Rk*Idiv**2 Pg1 = Rg1*Idiv**2 Pg2 = Rg2*Idiv**2 Pr1 = R1*(Idiv/2)**2 Pr2 = R2*(Idiv/2)**2 Pr3 = R3*(Idiv/2)**2 Pr4 = R4*(Idiv/2)**2 Pr5 = R5*(Idiv/2)**2 Pr5prime = R5prime*(Idiv/2)**2 Pr6 = R6*(Idiv/2)**2 Pr7 = R7*Idiv**2 Pr8 = R8*Idiv**2 Pa = Ra*Idiv**2 Ptot = Pk+Pg1+Pg2+Pr1+PR2+Pr3+Pr4+Pr5+Pr5prime+Pr6+Pr7+Pr8+Pa c calculate the effective resistance as if this base were a series voltage divider assuming c deltaV = Idivider*Reffective for each relevant stage. I can then (finally!) use this effective c resistance in GvsV to model the gain vs voltage. c This is simply going to ignore Vk, sum Vg1+Vg2+Vr1 for the first dynode, effectively divide c the resistances in the parallel circuit by 2 (since Iodd = Idiv/2, etc), ignore R5prime as redundant, c and return the initial resistance values for the final stages which are in series. c R0 = 1. R0 = 0.1502E6 Reff1 = (Vg1+Vg2+Vr1)/Idiv/R0 Reff2 = (Vr2-Vr1)/Idiv/R0 Reff3 = (Vr1+Vr3-Vr2)/Idiv/R0 Reff4 = (Vr2+Vr4-Vr1-Vr3)/Idiv/R0 Reff5 = (Vr1+Vr3+Vr5-Vr2-Vr4)/Idiv/R0 Reff6 = (Vr2+Vr4+Vr6-Vr1-Vr3-Vr5)/Idiv/R0 Reff7 = Vr7/Idiv/R0 Reff8 = Vr8/Idiv/R0 Reffa = Va/Idiv/R0 Refftot = Reff1+Reff2+Reff3+Reff4+Reff5+Reff6+Reff7+Reff8+Reffa Vchecksum = Vsupply - Idiv*(Reff1+Reff2+Reff3+Reff4+Reff5+ 1Reff6+Reff7+Reff8+Reffa) c output results RtotMOhms = Rtot/1E6 IdivmuA = Idiv*1E6 write(6,*)"V, Rtot(MOhms), Idiv(muA)",Vsupply,RtotMohms,IdivmuA write(6,*)"Vtot odd, even =",Vtot_odd, Vtot_even write(6,*)"Ptot =",Ptot," Watts" write(6,*) write(6,*)" Ri dVi(volts) Pi(Watts)" write(6,*)"K ", Rk, Vk, Pk write(6,*)"g1 ", Rg1, Vg1, Pg1 write(6,*)"g2 ", Rg2, Vg2, Pg2 write(6,*)"r1 ", R1, Vr1, Pr1 write(6,*)"r2 ", R2, Vr2, Pr2 write(6,*)"r3 ", R3, Vr3, Pr3 write(6,*)"r4 ", R4, Vr4, Pr4 write(6,*)"r5 ", R5, Vr5, Pr5 write(6,*)"r5prime", R5prime, Vr5prime, Pr5prime write(6,*)"r6 ", R6, Vr6, Pr6 write(6,*)"r7 ", R7, Vr7, Pr7 write(6,*)"r8 ", R8, Vr8, Pr8 write(6,*)"ra ", Ra, Va, Pa write(6,*) c Refftot doesn't mean anything unless R0 = 1. c write(6,*)"Refftot =",Refftot," Ohms" write(6,*)"effective resistor values in a series circuit model," write(6,*)"for R0=",R0," Ohms" write(6,*)"Reff1/R0 =",Reff1 write(6,*)"Reff2/R0 =",Reff2 write(6,*)"Reff3/R0 =",Reff3 write(6,*)"Reff4/R0 =",Reff4 write(6,*)"Reff5/R0 =",Reff5 write(6,*)"Reff6/R0 =",Reff6 write(6,*)"Reff7/R0 =",Reff7 write(6,*)"Reff8/R0 =",Reff8 write(6,*)"Reffa/R0 =",Reffa c write(6,*)"Vchecksum =",Vchecksum," volts" end c V, Rtot(MOhms), Idiv(muA) 1400.0000 2.8822501 485.73163 c Vtot odd, even = 1400.1215 1399.8785 c Ptot = 0.68002433 Watts c Ri dVi(volts) Pi(Watts) c K 200000.00 97.146324 4.71870452E-02 c g1 18000.000 8.7431698 4.24683420E-03 c g2 100000.00 48.573162 2.35935226E-02 c r1 700000.00 170.00607 4.12886627E-02 c r2 1148000.0 278.80997 6.77134097E-02 c r3 830000.00 201.57863 4.89565581E-02 c r4 746000.00 181.17790 4.40019183E-02 c r5 823000.00 199.87857 4.85436730E-02 c r5prime 523000.00 127.01882 3.08485311E-02 c r6 981000.00 238.25137 5.78631125E-02 c r7 300500.00 145.96236 7.08985329E-02 c r8 413000.00 200.60716 9.74412486E-02 c ra 413000.00 200.60716 9.74412486E-02 c effective resistor values in a series circuit model, c for R0= 150200.00 Ohms c Reff1/R0 = 3.1158454 c Reff2/R0 = 1.4913449 c Reff3/R0 = 1.2716377 c Reff4/R0 = 1.2117178 c Reff5/R0 = 1.5279626 c Reff6/R0 = 1.7376833 c Reff7/R0 = 2.0006657 c Reff8/R0 = 2.7496672 c Reffa/R0 = 2.7496672