PC Polarization

Production Cell Performance

(for targets used in A₁ⁿ experiment)

ifarm working dir:

/group/c-polhe3/Users/mychen/GitLab/N2_dilution_a1n/ python_jupyter/Pol_Inter_mychen.ipynb

Polarization interpolate with run time

$$P_{TC}^{run_{n}} = P_{TC}^{init} + (P_{TC}^{end} - P_{TC}^{init}) \frac{T_{run_{n}}^{midpoint} - T_{nmr}^{init}}{T_{nmr}^{end} - T_{nmr}^{init}}$$

Notes:

• offline_database dir:

/group/c-polhe3/Users/mychen/GitLab/N2_dilution_a1n/offline_A1n_mychen/database/

• Input files:

/group/c-polhe3/Users/mychen/GitLab/N2_dilution_a1n/offline_A1n_mychen/database/ NMR_List_wEPics_a1n.csv

/group/c-polhe3/Users/mychen/GitLab/N2_dilution_a1n/offline_A1n_mychen/database/ NMR_List_wFits_corr_a1n.json

/group/c-polhe3/Users/mychen/GitLab/N2_dilution_a1n/offline_A1n_mychen/database/an1_runlist.csv /group/c-polhe3/Users/mychen/GitLab/N2_dilution_a1n/online_input/rundb_shms_corr.json /group/c-polhe3/Users/mychen/GitLab/N2_dilution_a1n/online_input/rundb_hms_corr.json

- EPR and NMR AFP loss spreadsheet: (based on results in Melanie's Thesis) https://docs.google.com/spreadsheets/d/e/2PACX-1vSEIGiKaXQAqT4-nDXOkL_3mtBq-Yyw27grzy3izcezABwSIcR2VwmrFIUAHEQzreIWBc7A8NEXq8z/pub?output=xlsx
- Output files:

/group/c-polhe3/Users/mychen/GitLab/N2_dilution_a1n/offline_a1n/(s)hms_pol.csv

 Check all NMR signals and remove failed NMR measurements: /group/c-polhe3/Users/mychen/GitLab/N2_dilution_a1n/offline_a1n/hms_pol_bad_Mingyu.xlsx

Polarization Equations:

Assumption: although AFP losses are different in different chamber, the average AFP loss will equalized.

• β is whole cell polarization loss:

$$\beta = 1 - \frac{\alpha_{PC} n_{PC} V_{PC} + \alpha_{TC} n_{TC} V_{TC}}{n_{PC} V_{PC} + n_{TC} V_{TC}}$$

Prestentation_23_03_21

- C_{PC}^{EPR} is EPR calibration constant.
- C_{TCPC} is polarization ratio between TC and PC.

Interpolate Equations:

Note: polarization interpolate with run time

Results in Melanie's Thesis

(for targets used in A₁ⁿ experiment)

NMR/EPR calibration constants:

Table 4.6: NMR/EPR calibration constants for each cell for each field configuration.

Cell	Field Configuration (°)	CC (%/mV)
Dutch	90	6.03 ± 0.13
	180	9.62 ± 0.68
Big Brother	90	5.56 ± 0.42
	180	8.38 ± 0.14

NMR AFP loss:

Table 4.5: AFP losses per NMR-AFP sweep, in percentage, for the pumping chamber (PC) and target chamber (TC) of each cell, for each field configuration. There is a relative 20% uncertainty for each.

Cell	Field Configuration (°)	AFP Loss in PC (%)	AFP Loss in TC (%)	
Dutch	90	0.90	0.90	
	180	2.00	0.90	
Big Brother	90	0.90	0.90	
0	180	1.70	0.40	

PC/TC Temperature and Density:

Table 4.2: ³He number densities of the pumping and target chambers after correcting for the temperature deviating from room temperature, at which the fill **density** was measured, and their estimated internal temperatures. The PC's was found from the temperature test, and the target chamber's from the average of the 5 RTD readings [4].

Cell	\mathbf{T}_{PC} (°C)	\mathbf{T}_{TC} (°C)	n_{PC} (amg)	n_{TC} (amg)
Dutch	245 ± 5	37 ± 1	6.563 ± 0.131	10.936 ± 0.219
Big Brother	245 ± 5	31 ± 1	6.011 ± 0.120	10.241 ± 0.205

NMR/EPR calibration systemic uncertainty:

Table 5.31: Sources of error that affect the ³He target polarization.

³ He Target Quantity	% Error (Type)
39 K - 3 He κ_{0}	0.8 (Relative)
³ He PC and TC Densities	2.0 (Relative)
N ₂ Dilution	0.3 (Relative)
PC Temperature	5.0 (Absolute)
TC Temperature	2.0 (Absolute)
NMR/EPR Calibration Constants (Statistical)	2.0 / 7.0 (Relative)

• A systematic uncertainty of $\Delta P_b / P_b \le 2.2\%$ and $\Delta P_t / P_t \le 4\%$ was applied to each x bin.

$$C_{TCPC} = 0.996$$

 $\Delta C_{TCPC} = 0.002$

PC/TC Volume:

Cell	³ He ρ _{fill} (amg)	V _{PC} (cc)	V _{TC} (cc)	V _{TT} (cc)	Entrance Window Thickness (µm)	Exit Window Thickness (µm)
Dutch	7.759 ± 0.125	180.68	68.02	19.78	134.142 ± 0.063	143.475 ± 0.072
Big Brother	7.091 ± 0.119	184.65	63.32	20.49	138.196 ± 0.059	100.874 ± 0.070

• Use EPR/NMR calibration constants in Melanie's thesis

Results in Melanie's Talk March 2021 (for targets used in A,ⁿ experiment)

EPR/NMR Calibrations throughout A_1^n Production Running

Cell	Date	Field Direction (°)	AFP Loss (%)	Offline CC (%/mV)	Meets Precision Goal? (< 3%)
Dutch	1/11/20	180	1.26	9.35 ± 0.68	x
Dutch	2/10/20	90	1.20	4.94 ± 0.13	\checkmark
Big Brother	2/12/20	180	1.19	8.11 ± 1.08	x
Big Brother	2/13/20	90	1.146	4.77 ± 0.42	x
Big Brother	3/03/20	180	1.19	8.01 ± 0.14	\checkmark
Big Brother	3/13/20	180	1.19	7.78 ± 0.14	\checkmark
Austin	3/22/20	180	1.20	7.35 ± 0.13	\checkmark

Preliminary

What's been done so far: significant cross-checking with online results and statistical error estimation for every $A_1^n \& d_2^n$ EPR/NMR calibration

			EPR	AFP Loss	Temperature Correction	Spin up time constant	PC Density	TC Density	PC Volume	TC Volume
Cell	Kin	Field								
Dutch	30	90	4.94,0.13	0.9,0.9	200.2,7	6.0	6.563,0.131	10.936,0.219	180.68,0.01	68.02,0.01
		180	9.35,0.68	2.0,0.9	241.2,2.1	NaN	6.563,0.131	10.936,0.219	180.68,0.01	68.02,0.01
BigBrother	30	90	4.77,0.42	0.9,0.9	NaN	6.0	6.011,0.120	10.241,0.205	184.65,0.01	63.32,0.01
		180	8.01,0.14	1.7,0.4	244.9,2.2	NaN	6.011,0.120	10.241,0.205	184.65,0.01	63.32,0.01

Use EPR/NMR calibration constants in Melanie's talk March 2021

• Use EPR/NMR calibration constants from Junhao's Spread sheet:

DigDrothor	20	90	4.95 0.9,0.9	-	6
BigBiotilei 30	30	180 9.331.7,0.4	9.331.7,0.4	244.9,2.2	
Dutch	20	90	4.95 <mark>0.9,0.9</mark>	200.2,7	6
Duten	30	180	8.16 2.0,0.9	241.2,2.1	

Backup Slides

- NMR_He_20200129_044618 NMR signal upsweep=12.3162 mV (offline data base) (5% higher)
- Cell Dutch Tran NMR PC signal amplitude on ifarm for Junhao Offline database

1.675245754749509.0.01796047514459843

[[5.718352670771553, 0.007078005101874827],

005101874827

NMR_He_20200128_063150 NMR_He_20200128_091204

NMR He 20200129 044618 NMR He 20200129 125015

10 70061071901526 0 04785115595836136

21620075282052 0 04126607021562227

[12.31629075382952, 0.04136607031563337],

NMR List wFits corr a1n.json

Figure 4.21: ³He target polarization (within the pumping chamber) throughout E12-06-110 production data-taking. Credit to Junhao Chen.

Values from Junhao's Spread sheet:

BigBrother 20	ther 20		4.950.9,0.9		6
ыдыюше	30	180	9.331.7,0.4	244.9,2.2	
Dutch 20	20	90	4.95 <mark>0.9,0.9</mark>	200.2,7	6
Dutch	30	180	8.162.0,0.9	241.2,2.1	

• Preliminary results put in the Melanie's thesis.