* A C-program for MT19937: Real number version * genrand() generates one pseudorandom real number (double) * which is uniformly distributed on [0,1]-interval, for each * call. sgenrand(seed) set initial values to the working area * of 624 words. Before genrand(), sgenrand(seed) must be * called once. (seed is any 32-bit integer except for 0). * Integer generator is obtained by modifying two lines. * Coded by Takuji Nishimura, considering the suggestions by * Topher Cooper and Marc Rieffel in July-Aug. 1997. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later * version. * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU Library General Public License for more details. * You should have received a copy of the GNU Library General * Public License along with this library; if not, write to the * Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA * 02111-1307 USA * * Copyright (C) 1997 Makoto Matsumoto and Takuji Nishimura. * When you use this, send an email to: matumoto@math.keio.ac.jp * with an appropriate reference to your work. * ************************************************************************ * Fortran translation by Hiroshi Takano. Jan. 13, 1999. * * genrand() -> double precision function grnd() * sgenrand(seed) -> subroutine sgrnd(seed) * integer seed * * This program uses the following non-standard intrinsics. * ishft(i,n): If n>0, shifts bits in i by n positions to left. * If n<0, shifts bits in i by n positions to right. * iand (i,j): Performs logical AND on corresponding bits of i and j. * ior (i,j): Performs inclusive OR on corresponding bits of i and j. * ieor (i,j): Performs exclusive OR on corresponding bits of i and j. * ************************************************************************ * this main() outputs first 1000 generated numbers ccc program main ccc ccc implicit integer(i-n) ccc implicit double precision(a-h,o-z) ccc ccc parameter(no=1000) ccc dimension r(0:7) ccc ccc* call sgrnd(4357) ccc* any nonzero integer can be used as a seed ccc do 1000 j=0,no-1 ccc r(mod(j,8))=grnd() ccc if(mod(j,8).eq.7) then ccc write(*,'(8(f8.6,'' ''))') (r(k),k=0,7) ccc else if(j.eq.no-1) then ccc write(*,'(8(f8.6,'' ''))') (r(k),k=0,mod(no-1,8)) ccc endif ccc 1000 continue ccc ccc stop ccc end ************************************************************************ subroutine sgrnd(seed) implicit none * Period parameters integer N parameter(N=624) integer mti integer mt(0:N-1) !the array for the state vector common /block/mti,mt save /block/ integer seed *setting initial seeds to mt[N] using the generator Line 25 of Table 1 in * [KNUTH 1981, The Art of Computer Programming Vol. 2 (2nd Ed.), pp102] mt(0)= iand(seed,-1) do 1000 mti=1,N-1 mt(mti) = iand(69069 * mt(mti-1),-1) 1000 continue return end ************************************************************************ double precision function grnd() implicit none integer N,N1,M integer MATA,UMASK,LMASK integer TMASKB,TMASKC * Period parameters parameter(N = 624) parameter(N1 = N+1) parameter(M = 397) parameter(MATA = -1727483681) !constant vector a parameter(UMASK = -2147483648) !most significant w-r bits parameter(LMASK = 2147483647) !least significant r bits * Tempering parameters parameter(TMASKB= -1658038656) parameter(TMASKC= -272236544) integer mti integer mt(0:N-1) !the array for the state vector common /block/mti,mt save /block/ integer mag01(0:1) save mag01 !mag01(x) = x * MATA for x=0,1 integer y integer kk data mti/N1/ !mti==N+1 means mt[N] is not initialized data mag01/0, MATA/ if(mti.ge.N) then !generate N words at one time if(mti.eq.N+1) then !if sgrnd() has not been called, call sgrnd(4357) !a default initial seed is used endif do 1000 kk=0,N-M-1 y=ior(iand(mt(kk),UMASK),iand(mt(kk+1),LMASK)) mt(kk)=ieor(ieor(mt(kk+M),ishft(y,-1)),mag01(iand(y,1))) 1000 continue do 1100 kk=N-M,N-2 y=ior(iand(mt(kk),UMASK),iand(mt(kk+1),LMASK)) mt(kk)=ieor(ieor(mt(kk+(M-N)),ishft(y,-1)),mag01(iand(y,1))) 1100 continue y=ior(iand(mt(N-1),UMASK),iand(mt(0),LMASK)) mt(N-1)=ieor(ieor(mt(M-1),ishft(y,-1)),mag01(iand(y,1))) mti = 0 endif y=mt(mti) mti=mti+1 y=ieor(y,ishft(y,-11)) y=ieor(y,iand(ishft(y,7),TMASKB)) y=ieor(y,iand(ishft(y,15),TMASKC)) y=ieor(y,ishft(y,-18)) if(y.lt.0) then grnd=(dble(y)+2.0d0**32)/(2.0d0**32-1.0d0) else grnd=dble(y)/(2.0d0**32-1.0d0) endif return end