(file) Return to gustep.f CVS log (file) (dir) Up to [HallC] / geant_gep / src

   1 jones 1.1       subroutine gustep
   2           c
   3           c     this subroutine was written by jpsullivan april 21-22, 1993
   4           c     the tracking realated part is relatively simple -- if the
   5           c     particle leave the volume called 'targ', throw it away.
   6           c     it also makes a bunch of histograms
   7           c     
   8           c     *keep,gctrak.
   9           *--   author :
  10 brash 1.13 
  11                  implicit none
  12            
  13                  integer*4 mylast
  14                  integer*4 nhu,nhv,nhx
  15            
  16 jones 1.1        common/gctrak/vect(7),getot,gekin,vout(7),nmec,lmec(30),namec(30)
  17                 +     ,nstep ,maxnst,destep,destel,safety,sleng 
  18                 +     ,step  ,snext ,sfield
  19                 +     ,tofg  ,gekrat,upwght,ignext,inwvol,istop ,idecad,iekbin
  20                 +     , ilosl, imull,ingoto,nldown,nlevin,nlvsav,istory
  21            c     
  22                  integer nmec,lmec,namec,nstep ,maxnst,ignext,inwvol,istop
  23                 +     ,idecad,iekbin,ilosl, imull,ingoto,nldown,nlevin
  24                 +     ,nlvsav,istory
  25                  real  vect,getot,gekin,vout,destep,destel,safety,sleng ,step
  26                 +     ,snext,sfield,tofg  ,gekrat,upwght
  27            c     end gctrak
  28            *     keep,gcvolu.
  29            *--   author :
  30                  common/gcvolu/nlevel,names(15),number(15),
  31                 +     lvolum(15),lindex(15),infrom,nlevmx,nldev(15),linmx(15),
  32                 +     gtran(3,15),grmat(10,15),gonly(15),glx(3)
  33            c     
  34                  integer nlevel,number,lvolum,lindex,infrom,nlevmx,
  35                 +     nldev,linmx
  36                  character*4 names
  37 jones 1.1        real gtran,grmat,gonly,glx
  38            c     end gcvolu
  39            c     
  40            *     keep,gcbank.
  41            *--   author :
  42                  integer iq,lq,nzebra,ixstor,ixdiv,ixcons,lmain,lr1
  43                  integer kwbank,kwwork,iws
  44                  real gversn,zversn,fendq,ws,q
  45            c     
  46                  parameter (kwbank=69000,kwwork=5200)
  47                  common/gcbank/nzebra,gversn,zversn,ixstor,ixdiv,ixcons,fendq(16)
  48                 +     ,lmain,lr1,ws(kwbank)
  49                  dimension iq(2),q(2),lq(8000),iws(2)
  50                  equivalence (q(1),iq(1),lq(9)),(lq(1),lmain),(iws(1),ws(1))
  51                  common/gclink/jdigi ,jdraw ,jhead ,jhits ,jkine ,jmate ,jpart
  52                 +     ,jrotm ,jrung ,jset  ,jstak ,jgstat,jtmed ,jtrack,jvertx
  53                 +     ,jvolum,jxyz  ,jgpar ,jgpar2,jsklt
  54            c     
  55                  integer       jdigi ,jdraw ,jhead ,jhits ,jkine ,jmate ,jpart
  56                 +     ,jrotm ,jrung ,jset  ,jstak ,jgstat,jtmed ,jtrack,jvertx
  57                 +     ,jvolum,jxyz  ,jgpar,jgpar2 ,jsklt
  58 jones 1.1  c     
  59            *     keep,gcking.
  60            *--   author :
  61                  common/gcking/kcase,ngkine,gkin(5,100),tofd(100),iflgk(100)
  62                  integer       kcase,ngkine ,iflgk
  63                  real          gkin,tofd
  64            c     end gcking
  65            c     
  66            *     keep,gckine.
  67            *--   author :
  68            *--   author :
  69                  integer       ikine,itra,istak,ivert,ipart,itrtyp,napart,ipaold
  70                  real          pkine,amass,charge,tlife,vert,pvert
  71                  common/gckine/ikine,pkine(10),itra,istak,ivert,ipart,itrtyp
  72                 +     ,napart(5),amass,charge,tlife,vert(3),pvert(4),ipaold
  73            c     end gckine
  74            c     
  75                  integer ihset,ihdet,iset,idet,idtype,nvname,numbv
  76                  common/gcsets/ihset,ihdet,iset,idet,idtype,nvname,numbv(20)
  77                  real x1,y1,z1,lpar,v1,v2,v3,newdist,x1new,y1new,z1new
  78                  real xstr,ystr,zstr,xstrnew,ystrnew,zstrnew
  79 jones 1.1        real rotmat2,rotmat3,rotmat4,rotmat1
  80 brash 1.6  c
  81 jones 1.1        common/geomstep/rotmat1(3,3),rotmat2(3,3),rotmat3(3,3),
  82                 &     rotmat4(3,3)
  83            c     
  84                  include 'fpp_local.h'
  85                  include 'geant_local.h'
  86            c      include 'parameter.h'
  87            c      include 'espace_type.h'
  88            c      include 'detector.h'
  89            c      include 'transport.h'
  90            c      include 'option.h'
  91            c     
  92            c     
  93                  integer i,make_hist,ioff,ihit,ieffcheck
  94                  real pt_pi,ppar_pi,arg1,arg2,rapid_pi,pchmb,hits(6)
  95                  real a,b,c,beta,z,y,straw,ypath,rndm(3),ycompare
  96 brash 1.14       logical idflag
  97                  real*8 d1uetemp,d1xetemp,d1vetemp
  98 brash 1.2  c      write(6,*)'entering gustep'
  99            c      write(6,*)'inwvol =',inwvol
 100            c      write(6,*)'position =',vect(1),vect(2),vect(3)
 101            c      write(6,*)'names =',names(nlevel)
 102 jones 1.1  c     
 103            c
 104            c
 105                  if ( ngkine.gt.0. ) then
 106                     do i=1,nmec
 107                        if ( lmec(i).eq.12 ) then
 108            c               write ( 6,* ) ' gustep: hadronic interaction'
 109            c               write ( 6,* ) ' nevent=',nevent
 110                        end if
 111                     end do
 112                     mylast = min(100,ngkine)
 113                     do i=1,mylast
 114                        iflgk(i) = 1
 115                        if ( gkin(5,i).eq.4 ) iflgk(i) = 0
 116                        if ( gkin(4,i).gt.0.001 ) iflgk(i)=0
 117                     end do
 118            c         n_2nd = n_2nd + ngkine
 119                  endif
 120            c     
 121            c  the following call makes sure all of the secondary particles
 122            c  get tracked too (provided the flag iflgk(i) for that particle
 123 jones 1.1  c  was set in the loop above -- this point is not correctly or
 124            c  clearly documented in the version of the geant manual i have).
 125            c
 126            c      if(sectrack) then
 127            c         call gsking ( 0 )
 128            c      endif
 129            c     
 130 brash 1.6  c      write(*,*)'In GUSTEP: ... names(nlevel) = ',names(nlevel)
 131 brash 1.11 c      write(*,*)'In GUSTEP: ... inwvol = ',inwvol
 132 brash 1.6  
 133 jones 1.1        make_hist = 0
 134                  if ( inwvol.eq.1 .and. names(nlevel).eq."hall" ) then
 135                     make_hist=1
 136            c     
 137            c     if we get here, the tracking is done for this track
 138            c     (istop=1) but make a bunch of histograms before exitting
 139            c     note that ipart=8 means a pi+ and 9 is a pi-
 140            c     
 141            c     istop = 1
 142                  else if ( istop.ne.0.and. names(nlevel).eq."aira" ) then
 143                     make_hist=0
 144                  else if ( istop.ne.0.and. names(nlevel).eq."airb" ) then
 145                     make_hist=0
 146                  else if ( istop.ne.0.and. names(nlevel).eq."airc" ) then
 147                     make_hist=0
 148                  else if ( istop.ne.0.and. names(nlevel).eq."aird" ) then
 149                     make_hist=0
 150 brash 1.2        else if ( istop.ne.0.and. names(nlevel).eq."aire" ) then
 151                     make_hist=0
 152                  else if ( istop.ne.0.and. names(nlevel).eq."airf" ) then
 153                     make_hist=0
 154 brash 1.6        else if ( names(nlevel).eq."airg" ) then
 155            c         write(*,*)'In airg ... inwvol = ',inwvol
 156            c         write(*,*)'Z-value = ',vect(3)
 157                     if (istop.ne.0) then
 158                        make_hist=0
 159                     endif
 160                  else if ( names(nlevel).eq."HALL" ) then
 161            c         write(*,*)'In HALL ... inwvol = ',inwvol
 162            c         write(*,*)'Z-value = ',vect(3)
 163                     if (istop.ne.0) then
 164                        make_hist=0
 165                     endif
 166 brash 1.2        else if ( istop.ne.0.and. names(nlevel).eq."airh" ) then
 167                     make_hist=0
 168                  else if ( istop.ne.0.and. names(nlevel).eq."hch1" ) then
 169                     make_hist=0
 170 brash 1.11       else if ( names(nlevel).eq."hch2" ) then
 171            c	 write(*,*)'In hch2'
 172                     if(inwvol.eq.1) then
 173            c           write(6,*)'Coordinates at hch2'
 174            c           write(6,*)'x=',vect(1),' y=',vect(2),' z=',vect(3)
 175                       xahch2=vect(1)
 176                       yahch2=vect(2)
 177                       zahch2=vect(3)
 178                     endif
 179                     if(inwvol.eq.2) then
 180                        xbhch2=vect(1)
 181                        ybhch2=vect(2)
 182                        zbhch2=vect(3)
 183                     endif
 184            
 185                     if ( istop.ne.0 ) then
 186                        make_hist=0
 187                     endif
 188 brash 1.4        else if ( names(nlevel).eq."fch1" ) then
 189 brash 1.6  c         write(*,*)'In fch1 ... inwvol = ',inwvol
 190 brash 1.4           if(inwvol.eq.1) then
 191 brash 1.5  c           write(6,*)'Coordinates at fch1'
 192            c           write(6,*)'x=',vect(1),' y=',vect(2),' z=',vect(3)
 193 brash 1.6             x1a=vect(1)
 194                       y1a=vect(2)
 195                       z1a=vect(3)
 196 brash 1.4           endif
 197 brash 1.6           if(inwvol.eq.2) then
 198                        x1b=vect(1)
 199                        y1b=vect(2)
 200                        z1b=vect(3)
 201            
 202 brash 1.13             call get_wire_numbers(x1a,y1a,z1a,x1b,y1b,z1b,nhu,nhx,nhv,
 203 brash 1.12      &           n1ua,n1xa,n1va,n1ub,n1xb,n1vb)
 204 brash 1.6  
 205 brash 1.13             nhu1=nhu
 206                        nhx1=nhx
 207                        nhv1=nhv
 208            
 209                        if(nhu.eq.1.and.nhv.eq.1.and.nhx.eq.1) then
 210 brash 1.14                idflag=.false.
 211 brash 1.12                call get_drift_distance_ejb(x1a,y1a,z1a,x1b,y1b,z1b,
 212 brash 1.14      &              n1ua,n1xa,n1va,d1ue,d1xe,d1ve,idflag)
 213 brash 1.13                call get_drift_distance(x1a,y1a,z1a,x1b,y1b,z1b,
 214                 &              n1ua,n1xa,n1va,d1u,d1x,d1v)
 215 brash 1.12             else
 216                           call get_drift_distance_ejb(x1a,y1a,z1a,x1b,y1b,z1b,
 217 brash 1.14      &              n1ua,n1xa,n1va,d1ue,d1xe,d1ve,idflag)
 218                           d1uetemp=d1ue
 219                           d1xetemp=d1xe
 220                           d1vetemp=d1ve
 221 brash 1.12                call get_drift_distance_ejb(x1a,y1a,z1a,x1b,y1b,z1b,
 222 brash 1.14      &              n1ub,n1xb,n1vb,d1ue,d1xe,d1ve,idflag)
 223                           if(idflag)
 224                 &             write(*,*)'Drift Distance 1a: ',
 225                 &                 d1uetemp,d1xetemp,d1vetemp
 226                           if(idflag)
 227                 &             write(*,*)'Drift Distance 1b: ',d1ue,d1xe,d1ve
 228 brash 1.13                call get_drift_distance(x1a,y1a,z1a,x1b,y1b,z1b,
 229                 &              n1ua,n1xa,n1va,d1u,d1x,d1v)
 230 brash 1.14                if(idflag)
 231                 &             write(*,*)'Drift Distance 1c: ',d1u,d1x,d1v
 232                           call get_drift_distance(x1a,y1a,z1a,x1b,y1b,z1b,
 233                 &              n1ub,n1xb,n1vb,d1u,d1x,d1v)
 234                           if(idflag)
 235                 &             write(*,*)'Drift Distance 1d: ',d1u,d1x,d1v
 236 brash 1.12             endif
 237 brash 1.11           
 238 brash 1.9  c            write(*,*)'Hit in first chamber ...'
 239 brash 1.12 c            write(*,*)'Wire Numbers: ',n1ua,n1xa,n1va
 240                           
 241 brash 1.6           endif
 242            
 243                     if ( istop.ne.0 ) then
 244                        make_hist=0
 245                     endif
 246                  else if ( names(nlevel).eq."fch2" ) then
 247            c         write(*,*)'In fch2 ... inwvol = ',inwvol
 248            c         write(*,*)'Z-value = ',vect(3)
 249                     if(inwvol.eq.1) then
 250                       x2a=vect(1)
 251                       y2a=vect(2)
 252                       z2a=vect(3)
 253                     endif
 254                     if(inwvol.eq.2) then
 255                        x2b=vect(1)
 256                        y2b=vect(2)
 257                        z2b=vect(3)
 258            
 259 brash 1.13             call get_wire_numbers(x2a,y2a,z2a,x2b,y2b,z2b,nhu,nhx,nhv,
 260 brash 1.12      &           n2ua,n2xa,n2va,n2ub,n2xb,n2vb)
 261 brash 1.11 
 262 brash 1.13             nhu2=nhu
 263                        nhx2=nhx
 264                        nhv2=nhv
 265            
 266                        if(nhu.eq.1.and.nhv.eq.1.and.nhx.eq.1) then
 267 brash 1.12                call get_drift_distance_ejb(x2a,y2a,z2a,x2b,y2b,z2b,
 268 brash 1.14      &              n2ua,n2xa,n2va,d2ue,d2xe,d2ve,idflag)
 269 brash 1.13                call get_drift_distance(x2a,y2a,z2a,x2b,y2b,z2b,
 270                 &              n2ua,n2xa,n2va,d2u,d2x,d2v)
 271 brash 1.12             else
 272                           call get_drift_distance_ejb(x2a,y2a,z2a,x2b,y2b,z2b,
 273 brash 1.14      &              n2ua,n2xa,n2va,d2ue,d2xe,d2ve,idflag)
 274            c               write(*,*)'Drift Distance 2a: ',d2ue,d2xe,d2ve
 275 brash 1.12                call get_drift_distance_ejb(x2a,y2a,z2a,x2b,y2b,z2b,
 276 brash 1.14      &              n2ub,n2xb,n2vb,d2ue,d2xe,d2ve,idflag)
 277            c               write(*,*)'Drift Distance 2b: ',d2ue,d2xe,d2ve
 278 brash 1.13                call get_drift_distance(x2a,y2a,z2a,x2b,y2b,z2b,
 279                 &              n2ua,n2xa,n2va,d2u,d2x,d2v)
 280 brash 1.14 c               write(*,*)'Drift Distance 2c: ',d2u,d2x,d2v
 281                           call get_drift_distance(x2a,y2a,z2a,x2b,y2b,z2b,
 282                 &              n2ub,n2xb,n2vb,d2u,d2x,d2v)
 283            c               write(*,*)'Drift Distance 2c: ',d2u,d2x,d2v
 284 brash 1.12             endif
 285                      
 286 brash 1.8  
 287 brash 1.12 c            write(*,*)'Hit in first chamber ...'
 288            c            write(*,*)'Wire Numbers: ',n2ua,n2xa,n2va
 289 brash 1.6  
 290                     endif
 291            c
 292                     if ( istop.ne.0 ) then
 293                        make_hist=0
 294                     endif
 295                  else if ( names(nlevel).eq."fch3" ) then
 296                     if(inwvol.eq.1) then
 297                       x3a=vect(1)
 298                       y3a=vect(2)
 299                       z3a=vect(3)
 300                     endif
 301                     if(inwvol.eq.2) then
 302                        x3b=vect(1)
 303                        y3b=vect(2)
 304                        z3b=vect(3)
 305            
 306 brash 1.13             call get_wire_numbers(x3a,y3a,z3a,x3b,y3b,z3b,nhu,nhx,nhv,
 307 brash 1.12      &           n3ua,n3xa,n3va,n3ub,n3xb,n3vb)
 308 brash 1.11 
 309 brash 1.13             nhu3=nhu
 310                        nhx3=nhx
 311                        nhv3=nhv
 312            
 313                        if(nhu.eq.1.and.nhv.eq.1.and.nhx.eq.1) then
 314 brash 1.12                call get_drift_distance_ejb(x3a,y3a,z3a,x3b,y3b,z3b,
 315 brash 1.14      &              n3ua,n3xa,n3va,d3ue,d3xe,d3ve,idflag)
 316 brash 1.13                call get_drift_distance(x3a,y3a,z3a,x3b,y3b,z3b,
 317                 &              n3ua,n3xa,n3va,d3u,d3x,d3v)
 318 brash 1.12             else
 319                           call get_drift_distance_ejb(x3a,y3a,z3a,x3b,y3b,z3b,
 320 brash 1.14      &              n3ua,n3xa,n3va,d3ue,d3xe,d3ve,idflag)
 321            c               write(*,*)'Drift Distance 3a: ',d3ue,d3xe,d3ve
 322 brash 1.12                call get_drift_distance_ejb(x3a,y3a,z3a,x3b,y3b,z3b,
 323 brash 1.14      &              n3ub,n3xb,n3vb,d3ue,d3xe,d3ve,idflag)
 324            c               write(*,*)'Drift Distance 3b: ',d3ue,d3xe,d3ve
 325 brash 1.13                call get_drift_distance(x3a,y3a,z3a,x3b,y3b,z3b,
 326                 &              n3ua,n3xa,n3va,d3u,d3x,d3v)
 327 brash 1.14 c               write(*,*)'Drift Distance 3c: ',d3u,d3x,d3v
 328 brash 1.12             endif
 329                      
 330 brash 1.8  
 331 brash 1.12 c            write(*,*)'Hit in first chamber ...'
 332            c            write(*,*)'Wire Numbers: ',n3ua,n3xa,n3va
 333 brash 1.6  
 334                     endif
 335            c
 336                     if ( istop.ne.0 ) then
 337                        make_hist=0
 338                     endif     
 339                  else if ( names(nlevel).eq."fch4" ) then
 340                     if(inwvol.eq.1) then
 341                       x4a=vect(1)
 342                       y4a=vect(2)
 343                       z4a=vect(3)
 344                     endif
 345                     if(inwvol.eq.2) then
 346                        x4b=vect(1)
 347                        y4b=vect(2)
 348                        z4b=vect(3)
 349            
 350 brash 1.13             call get_wire_numbers(x4a,y4a,z4a,x4b,y4b,z4b,nhu,nhx,nhv,
 351 brash 1.12      &           n4ua,n4xa,n4va,n4ub,n4xb,n4vb)
 352 brash 1.11 
 353 brash 1.13             nhu4=nhu
 354                        nhx4=nhx
 355                        nhv4=nhv
 356            
 357                        if(nhu.eq.1.and.nhv.eq.1.and.nhx.eq.1) then
 358 brash 1.12                call get_drift_distance_ejb(x4a,y4a,z4a,x4b,y4b,z4b,
 359 brash 1.14      &              n4ua,n4xa,n4va,d4ue,d4xe,d4ve,idflag)
 360 brash 1.13                call get_drift_distance(x4a,y4a,z4a,x4b,y4b,z4b,
 361                 &              n4ua,n4xa,n4va,d4u,d4x,d4v)
 362 brash 1.12             else
 363                           call get_drift_distance_ejb(x4a,y4a,z4a,x4b,y4b,z4b,
 364 brash 1.14      &              n4ua,n4xa,n4va,d4ue,d4xe,d4ve,idflag)
 365            c               write(*,*)'Drift Distance 4a: ',d4ue,d4xe,d4ve
 366 brash 1.12                call get_drift_distance_ejb(x4a,y4a,z4a,x4b,y4b,z4b,
 367 brash 1.14      &              n4ub,n4xb,n4vb,d4ue,d4xe,d4ve,idflag)
 368            c               write(*,*)'Drift Distance 4b: ',d4ue,d4xe,d4ve
 369 brash 1.13                call get_drift_distance(x4a,y4a,z4a,x4b,y4b,z4b,
 370                 &              n4ua,n4xa,n4va,d4u,d4x,d4v)
 371 brash 1.14 c               write(*,*)'Drift Distance 4c: ',d4u,d4x,d4v
 372 brash 1.12             endif
 373                      
 374 brash 1.8  
 375 brash 1.12 c            write(*,*)'Hit in first chamber ...'
 376            c            write(*,*)'Wire Numbers: ',n3ua,n3xa,n3va
 377 brash 1.6  
 378                     endif
 379            c
 380 brash 1.4           if ( istop.ne.0 ) then
 381                        make_hist=0
 382                     endif
 383 brash 1.2        else if ( istop.ne.0.and. names(nlevel).eq."sci1" ) then
 384                     make_hist=0
 385                  else if ( names(nlevel).eq."anl1" ) then
 386 jones 1.1           if(inwvol.eq.1) then
 387 brash 1.5  c           write(6,*)'We have a hit in the fist analyzer at'
 388            c           write(6,*)'x=',vect(1),' y=',vect(2),' z=',vect(3)
 389 brash 1.4             xdet=vect(1)
 390                       ydet=vect(2)
 391                       zdet=vect(3)
 392 jones 1.1           endif
 393                     if ( istop.ne.0 ) then
 394                        make_hist=0
 395                     endif
 396                  end if
 397            c     
 398            c     
 399            c     store current track parameters (including position ) in jxyz structure.
 400            c     
 401                  call gsxyz
 402            c     
 403            c     moved histograming stuff to gulast
 404            c     
 405            c     write(6,*)'done in gustep'
 406             9999 return
 407 brash 1.6        end
 408            
 409 brash 1.13       subroutine get_wire_numbers(xa,ya,za,xb,yb,zb,nhu,nhx,nhv,
 410 brash 1.12      %     nu1,nx1,nv1,nu2,nx2,nv2)
 411 brash 1.6  
 412 brash 1.7        implicit none
 413            
 414 brash 1.6        real*8 xa,ya,za,xb,yb,zb
 415 brash 1.12       integer*4 nu1,nx1,nv1
 416                  integer*4 nu2,nx2,nv2
 417 brash 1.13       integer*4 nhu,nhx,nhv
 418 brash 1.6  
 419                  real*8 zc,zu,zx,zv,zt,xp,yp,xu,xx,xv,yu,yx,yv,uw,xw,vw
 420 brash 1.7        real*8 anu,anx,anv
 421 brash 1.6  
 422 brash 1.12       nu2=0
 423                  nx2=0
 424                  nv2=0
 425            c
 426 brash 1.6  c We have the (x,y,z) coordinates of the entrance (a) and exit (b) points
 427            c of the track.  We can use this information to calculate the wire numbers that
 428            c were hit in each plane.
 429            c
 430                  zc=(zb-za)/2.0+za
 431                  zu=zc-1.60
 432                  zx=zc
 433                  zv=zc+1.60
 434                  zt=(zb-za)
 435                  xp=(xb-xa)/zt
 436                  yp=(yb-ya)/zt
 437 brash 1.12 c
 438 brash 1.14 c Project to the FRONT of the "cell" associated with each plane.
 439            c
 440                  xu=xa+xp*(zu-za-0.8)
 441                  yu=ya+yp*(zu-za-0.8)
 442                  xx=xa+xp*(zx-za-0.8)
 443                  yx=ya+yp*(zx-za-0.8)
 444                  xv=xa+xp*(zv-za-0.8)
 445                  yv=ya+yp*(zv-za-0.8)      
 446            c
 447            c      xu=xa
 448            c      yu=ya
 449            c      xx=xa
 450            c      yx=ya
 451            c      xv=xa
 452            c      yv=ya
 453 brash 1.6  c
 454                  uw=(xu+yu)/sqrt(2.0)
 455                  xw=xx
 456                  vw=(-xv+yv)/sqrt(2.0)
 457 brash 1.7  c
 458 brash 1.8  c      write(*,*)'********************'
 459 brash 1.10 c      write(*,*)'A: ',xa,ya,za
 460            c      write(*,*)'B: ',xb,yb,zb
 461            c      write(*,*)'U: ',xu,yu,zu
 462            c      write(*,*)'X: ',xx,yx,zx
 463            c      write(*,*)'V: ',xv,yv,zv
 464            c      write(*,*)'W: ',uw,xw,vw
 465 brash 1.14 c      write(*,*)'********************'
 466 brash 1.7  c     
 467                  anu=(-uw-3.592+104.0)/2.0
 468                  anx=(-xw-5.080+84.0)/2.0
 469                  anv=(vw-3.592+104.0)/2.0
 470            c
 471 brash 1.10 c      write(*,*)'Wires: ',anu,anx,anv
 472            c      write(*,*)'********************'
 473 brash 1.12       nu1=anu
 474                  nv1=anv
 475                  nx1=anx
 476                  if((anu-nu1).ge.0.500)nu1=nu1+1
 477                  if((anx-nx1).ge.0.500)nx1=nx1+1
 478                  if((anv-nv1).ge.0.500)nv1=nv1+1
 479            c      write(*,*)'using front of chamber: ',nu1,nx1,nv1
 480            c
 481 brash 1.14 c Now project to the BACK of the "cell" associated with each plane.
 482 brash 1.12 c
 483 brash 1.14       xu=xa+xp*(zu-za+0.8)
 484                  yu=ya+yp*(zu-za+0.8)
 485                  xx=xa+xp*(zx-za+0.8)
 486                  yx=ya+yp*(zx-za+0.8)
 487                  xv=xa+xp*(zv-za+0.8)
 488                  yv=ya+yp*(zv-za+0.8)      
 489            c
 490            c      xu=xb
 491            c      yu=yb
 492            c      xx=xb
 493            c      yx=yb
 494            c      xv=xb
 495            c      yv=yb
 496 brash 1.12 c
 497                  uw=(xu+yu)/sqrt(2.0)
 498                  xw=xx
 499                  vw=(-xv+yv)/sqrt(2.0)
 500 brash 1.7  c
 501 brash 1.12 c      write(*,*)'********************'
 502            c      write(*,*)'A: ',xa,ya,za
 503            c      write(*,*)'B: ',xb,yb,zb
 504            c      write(*,*)'U: ',xu,yu,zu
 505            c      write(*,*)'X: ',xx,yx,zx
 506            c      write(*,*)'V: ',xv,yv,zv
 507 brash 1.10 c      write(*,*)'W: ',uw,xw,vw
 508            c      write(*,*)'********************'
 509 brash 1.12 c     
 510                  anu=(-uw-3.592+104.0)/2.0
 511                  anx=(-xw-5.080+84.0)/2.0
 512                  anv=(vw-3.592+104.0)/2.0
 513            c
 514            c      write(*,*)'Wires: ',anu,anx,anv
 515            c      write(*,*)'********************'
 516                  nu2=anu
 517                  nv2=anv
 518                  nx2=anx
 519                  if((anu-nu2).ge.0.500)nu2=nu2+1
 520                  if((anx-nx2).ge.0.500)nx2=nx2+1
 521                  if((anv-nv2).ge.0.500)nv2=nv2+1
 522 brash 1.13       nhu=1
 523                  nhx=1
 524                  nhv=1
 525                  if(nu1.ne.nu2)nhu=2
 526                  if(nx1.ne.nx2)nhx=2
 527                  if(nv1.ne.nv2)nhv=2
 528 brash 1.7  
 529 brash 1.12       return
 530                  end
 531 brash 1.8  
 532 brash 1.12 c      subroutine get_drift_distance_ejb(xa,ya,za,xb,yb,zb,
 533            c     &           nu,nx,nv,du,dx,dv)
 534            c
 535            c      implicit none
 536            c
 537            c      real*8 xa,ya,za,xb,yb,zb,du,dx,dv
 538            c      integer*4 nu,nx,nv
 539            c      real*8 tphi,ttheta
 540            c      real*8 uw,xw,vw
 541            c      real*8 c11,c12,c21,c22,d1,d2,a,zt,xt,yt
 542            c      real*8 xu,yu,zu
 543            c      real*8 xv,yv,zv
 544            c      real*8 xx,yx,zx
 545            c
 546            c      tphi=(xb-xa)/(zb-za)
 547            c      ttheta=(yb-ya)/(zb-za)
 548            c
 549            c      uw=-2.0*nu-3.592+104.0
 550            c      xw=-2.0*nx-5.080+84.0
 551            c      vw=2.0*nv+3.592-104.0
 552            c      zu=(zb+za)/2.0-1.60
 553 brash 1.12 c      zv=(zb+za)/2.0+1.60
 554            c      zx=(zb+za)/2.0
 555            c
 556            cc      write(*,*)'W: ',uw,xw,vw
 557            cc      write(*,*)'********************'
 558            c
 559            c      c11=tphi-ttheta
 560            c      c12=sqrt(2.0)
 561            c      d1=-xa+ya
 562            c      c21=tphi*tphi+ttheta*ttheta+1.0
 563            c      c22=-ttheta/sqrt(2.0)+tphi/sqrt(2.0)
 564            c      d2=uw*(ttheta+tphi)/sqrt(2.0)-xa*tphi-ya*ttheta+zu-za
 565            c
 566            c      a=(d1*c21-d2*c11)/(c21*c12-c22*c11)
 567            c      zt=(d1-c12*a)/c11
 568            cc      write(*,*)'U Plane zt,a: ',zt,a
 569            c
 570            c      xt=xa+zt*tphi
 571            c      yt=ya+zt*ttheta
 572            c      xu=(uw-a)/sqrt(2.0)
 573            c      yu=(uw+a)/sqrt(2.0)
 574 brash 1.12 c
 575            c      zt=zt+za
 576            c
 577            c      du=sqrt((xt-xu)**2+(yt-yu)**2+(zt-zu)**2)      
 578            c       
 579            c      c11=tphi+ttheta
 580            c      c12=-sqrt(2.0)
 581            c      d1=-xa-ya
 582            c      c21=tphi*tphi+ttheta*ttheta+1.0
 583            c      c22=-ttheta/sqrt(2.0)-tphi/sqrt(2.0)
 584            c      d2=vw*(ttheta+tphi)/sqrt(2.0)-xa*tphi-ya*ttheta+zv-za
 585            c
 586            c      a=(d1*c21-d2*c11)/(c21*c12-c22*c11)
 587            c      zt=(d1-c12*a)/c11
 588            cc      write(*,*)'V Plane zt,a: ',zt,a
 589            c
 590            c      xt=xa+zt*tphi
 591            c      yt=ya+zt*ttheta
 592            c      xv=-(vw-a)/sqrt(2.0)
 593            c      yv=(vw+a)/sqrt(2.0)
 594            c
 595 brash 1.12 c      zt=zt+za
 596            c      
 597            c      dv=sqrt((xt-xv)**2+(yt-yv)**2+(zt-zv)**2)
 598            c     
 599            c      c11=tphi
 600            c      c12=-1.0
 601            c      d1=-ya
 602            c      c21=tphi*tphi+ttheta*ttheta+1.0
 603            c      c22=-ttheta
 604            c      d2=xw*tphi-xa*tphi-ya*ttheta+zx-za
 605            c
 606            c      a=(d1*c21-d2*c11)/(c21*c12-c22*c11)
 607            c      zt=(d1-c12*a)/c11
 608            cc      write(*,*)'X Plane zt,a: ',zt,a
 609            c
 610            c      xt=xa+zt*tphi
 611            c      yt=ya+zt*ttheta
 612            c      xx=xw
 613            c      yx=a
 614            c
 615            c      zt=zt+za
 616 brash 1.12 c      
 617            c      dx=sqrt((xt-xx)**2+(yt-yx)**2+(zt-zx)**2)
 618            c
 619            cc      if((du.gt.1.00)) then
 620 brash 1.11 c         write(*,*)'Calculating Drift Distance ...'
 621            c         write(*,*)'A: ',xa,ya,za
 622            c         write(*,*)'B: ',xb,yb,zb
 623 brash 1.12 cc         write(*,*)'U: ',xu,yu,zu
 624            cc         write(*,*)'V: ',xv,yv,zv
 625            cc         write(*,*)'X: ',xx,yx,zx
 626 brash 1.11 c         write(*,*)'U Drift distance = ',du
 627            c         write(*,*)'V Drift distance = ',dv
 628            c         write(*,*)'X Drift distance = ',dx
 629 brash 1.12 cc      endif
 630            c
 631            c      return
 632            c      end
 633 brash 1.11 
 634            
 635                  subroutine get_drift_distance(xa,ya,za,xb,yb,zb,
 636                 &           nu,nx,nv,distu,distx,distv)
 637            c
 638            c     This subroutine uses the entrance (a) and exit (b)
 639            c     points of a chamber to define the line of the track.
 640            c     It uses the wire number and wire direction to define
 641            c     the wire line.  It then uses these to build parallel
 642            c     planes by computing a normal vector to both of the lines.
 643            c     Finally, it calculates the distance between these two
 644            c     planes which is the distance of shortest approach.
 645            c      
 646                  implicit none
 647            c
 648                  real*8 xa,ya,za,xb,yb,zb
 649                  real*8 distu,distx,distv,xp,yp,zc
 650                  integer*4 nu,nx,nv
 651                  real*8 uw,xw,vw
 652                  real*8 zt,xt,yt
 653                  real*8 xu,yu,zu
 654 brash 1.11       real*8 xv,yv,zv
 655                  real*8 xx,yx,zx
 656            c
 657            c     the direction of each of the lines
 658            c     vect1=track   vectu=u wire
 659 brash 1.14       real*8 vect1(1:3), vectu(1:3)
 660                  real*8 vectx(1:3), vectv(1:3)
 661 brash 1.11 c   
 662            c     the normal vector to both lines
 663 brash 1.14       real*8 normu(1:3)
 664                  real*8 normx(1:3)
 665                  real*8 normv(1:3)
 666 brash 1.11 c
 667            c     the coefficients of the plane
 668 brash 1.14       real*8 pvectu(1:4)
 669                  real*8 pvectx(1:4)
 670                  real*8 pvectv(1:4)
 671 brash 1.11 c
 672                  vect1(1)=xb-xa
 673                  vect1(2)=yb-ya
 674                  vect1(3)=zb-za
 675            c
 676                  zu=(zb+za)/2.0-1.60
 677                  zv=(zb+za)/2.0+1.60
 678                  zx=(zb+za)/2.0
 679            c
 680            c     use line number to calculate distance relative to
 681            c     wire plane, then convert to x and y
 682            c      write(*,*)'nu nx nv',nu,nx,nv
 683                  uw=-2.0*nu-3.592+104.0
 684                  xw=-2.0*nx-5.080+84.0
 685                  vw=2.0*nv+3.592-104.0
 686                  xu=uw/sqrt(2.0)
 687                  yu=uw/sqrt(2.0)      
 688                  xx=xw
 689                  yx=0
 690                  xv=-vw/sqrt(2.0)
 691                  yv=vw/sqrt(2.0)
 692 brash 1.12 c      write(*,*)'uw xu yu zu',uw,xu,yu,zu
 693 brash 1.11 c      write(*,*)'xw xx yx zx',xw,xx,yx,zx
 694            c      write(*,*)'vw xv yv zv',vw,xv,yv,zv
 695            c
 696            c     define direction vector for wires, will be the same
 697            c     for each wire in a given plane, and is known
 698            c     for each plane
 699                  vectu(1)=1.0/sqrt(2.0)
 700                  vectu(2)=1.0/sqrt(2.0)
 701                  vectu(3)=0.0
 702                  vectx(1)=0.0
 703                  vectx(2)=1.0
 704                  vectx(3)=0.0
 705                  vectv(1)=-1.0/sqrt(2.0)
 706                  vectv(2)=1.0/sqrt(2.0)
 707                  vectv(3)=0.0
 708            c
 709 brash 1.12 c      write(*,*)'distance calculations .....'
 710            c      write(*,*)xa,ya,za
 711            c      write(*,*)vect1(1),vect1(2),vect1(3)
 712            c      write(*,*)xu,yu,zu
 713            c      write(*,*)vectu(1),vectu(2),vectu(3)
 714            c      write(*,*)xx,yx,zx
 715            c      write(*,*)vectx(1),vectx(2),vectx(3)
 716            c      write(*,*)xv,yv,zv
 717            c      write(*,*)vectv(1),vectv(2),vectv(3)
 718            c      write(*,*)'distance calculations .....'
 719            c
 720 brash 1.11 c     cross product
 721                  normu(1)=vect1(2)*vectu(3)-vect1(3)*vectu(2)
 722                  normu(2)=vect1(1)*vectu(3)-vect1(3)*vectu(1)
 723                  normu(3)=vect1(1)*vectu(2)-vect1(2)*vectu(1)
 724                  normx(1)=vect1(2)*vectx(3)-vect1(3)*vectx(2)
 725                  normx(2)=vect1(1)*vectx(3)-vect1(3)*vectx(1)
 726                  normx(3)=vect1(1)*vectx(2)-vect1(2)*vectx(1)
 727                  normv(1)=vect1(2)*vectv(3)-vect1(3)*vectv(2)
 728                  normv(2)=vect1(1)*vectv(3)-vect1(3)*vectv(1)
 729                  normv(3)=vect1(1)*vectv(2)-vect1(2)*vectv(1)
 730            c      
 731                  pvectu(1)=normu(1)
 732                  pvectu(2)=normu(2)
 733                  pvectu(3)=normu(3)
 734                  pvectu(4)=normu(1)*(-xu)+normu(2)*(-yu)+normu(3)*(-zu)
 735                  pvectx(1)=normx(1)
 736                  pvectx(2)=normx(2)
 737                  pvectx(3)=normx(3)
 738                  pvectx(4)=normx(1)*(-xx)+normx(2)*(-yx)+normx(3)*(-zx)
 739                  pvectv(1)=normv(1)
 740                  pvectv(2)=normv(2)
 741 brash 1.11       pvectv(3)=normv(3)
 742                  pvectv(4)=normv(1)*(-xv)+normv(2)*(-yv)+normv(3)*(-zv)
 743            c
 744            c     distance formula
 745                  distu=(pvectu(1)*xa+pvectu(2)*ya+pvectu(3)*za+pvectu(4))
 746                 &     /sqrt(normu(1)**2+normu(2)**2+normu(3)**2)
 747                  distx=(pvectx(1)*xa+pvectx(2)*ya+pvectx(3)*za+pvectx(4))
 748                 &     /sqrt(normx(1)**2+normx(2)**2+normx(3)**2)
 749                  distv=(pvectv(1)*xa+pvectv(2)*ya+pvectv(3)*za+pvectv(4))
 750                 &     /sqrt(normv(1)**2+normv(2)**2+normv(3)**2)
 751            c      write(*,*)'Drift distance: ',distu, distx, distv
 752 brash 1.14 c     
 753            c        write(*,*)'Brads routine ....' 
 754            c        write(*,*)xa,ya,za
 755            c        write(*,*)xb,yb,zb
 756            c        write(*,*)nu,nx,nv
 757            c   	write(*,*)uw,xw,vw
 758            c        write(*,*)'Drift distance: ',distu, distx, distv
 759                  
 760 brash 1.11       return
 761                  end
 762            
 763 brash 1.12       subroutine get_drift_distance_ejb(xa,ya,za,xb,yb,zb,
 764 brash 1.14      &           nu,nx,nv,distu,distx,distv,idflag)
 765 brash 1.12 c
 766            c Author: Ed Brash - December 15th, 2005
 767            c Yet another attempt at a full drift distance calculation
 768            c
 769                  implicit none
 770            c
 771                  real*8 xa,ya,za,xb,yb,zb
 772                  real*8 distu,distx,distv,xp,yp,zc
 773                  integer*4 nu,nx,nv
 774                  real*8 uw,xw,vw
 775                  real*8 zt,xt,yt
 776                  real*8 xu,yu,zu
 777                  real*8 xv,yv,zv
 778                  real*8 xx,yx,zx
 779 brash 1.14       logical idflag
 780 brash 1.12 c
 781            c     the direction of each of the lines
 782            c     vect1=track   vectu=u wire
 783                  real*8 vect1(1:3), vectu(1:3)
 784                  real*8 vectx(1:3), vectv(1:3)
 785            
 786            c     the difference vector between the defining points
 787                  real*8 du(1:3),dx(1:3),dv(1:3)
 788            c   
 789            c     the normal vector to both lines
 790                  real*8 normu(1:3)
 791                  real*8 normx(1:3)
 792                  real*8 normv(1:3)
 793                  real*8 normumag,normxmag,normvmag
 794            c
 795            c     the coefficients of the distance vector
 796                  real*8 dvectu(1:4)
 797                  real*8 dvectx(1:4)
 798                  real*8 dvectv(1:4)
 799            c
 800 brash 1.14       idflag=.false.
 801 brash 1.12       vect1(1)=xb-xa
 802                  vect1(2)=yb-ya
 803                  vect1(3)=zb-za
 804            c
 805                  zu=(zb+za)/2.0-1.60
 806                  zv=(zb+za)/2.0+1.60
 807                  zx=(zb+za)/2.0
 808            c
 809            c     use line number to calculate distance relative to
 810            c     wire plane, then convert to x and y
 811            c      write(*,*)'nu nx nv',nu,nx,nv
 812                  uw=-2.0*nu-3.592+104.0
 813                  xw=-2.0*nx-5.080+84.0
 814                  vw=2.0*nv+3.592-104.0
 815                  xu=uw/sqrt(2.0)
 816                  yu=uw/sqrt(2.0)      
 817                  xx=xw
 818                  yx=0
 819                  xv=-vw/sqrt(2.0)
 820                  yv=vw/sqrt(2.0)
 821            c      write(*,*)'uw xu yu zu',uw,xu,yu,zu
 822 brash 1.12 c      write(*,*)'xw xx yx zx',xw,xx,yx,zx
 823            c      write(*,*)'vw xv yv zv',vw,xv,yv,zv
 824            c
 825            c     define direction vector for wires, will be the same
 826            c     for each wire in a given plane, and is known
 827            c     for each plane
 828                  vectu(1)=1.0/sqrt(2.0)
 829                  vectu(2)=-1.0/sqrt(2.0)
 830                  vectu(3)=0.0
 831                  vectx(1)=0.0
 832                  vectx(2)=1.0
 833                  vectx(3)=0.0
 834                  vectv(1)=1.0/sqrt(2.0)
 835                  vectv(2)=1.0/sqrt(2.0)
 836                  vectv(3)=0.0
 837            c
 838            c      write(*,*)'distance calculations .....'
 839            c      write(*,*)xa,ya,za
 840            c      write(*,*)vect1(1),vect1(2),vect1(3)
 841            c      write(*,*)xu,yu,zu
 842            c      write(*,*)vectu(1),vectu(2),vectu(3)
 843 brash 1.12 c      write(*,*)xx,yx,zx
 844            c      write(*,*)vectx(1),vectx(2),vectx(3)
 845            c      write(*,*)xv,yv,zv
 846            c      write(*,*)vectv(1),vectv(2),vectv(3)
 847            c      write(*,*)'distance calculations .....'
 848            c
 849            c     cross product
 850                  normu(1)=vect1(2)*vectu(3)-vect1(3)*vectu(2)
 851                  normu(2)=vect1(3)*vectu(1)-vect1(1)*vectu(3)
 852                  normu(3)=vect1(1)*vectu(2)-vect1(2)*vectu(1)
 853                  normx(1)=vect1(2)*vectx(3)-vect1(3)*vectx(2)
 854                  normx(2)=vect1(3)*vectx(1)-vect1(1)*vectx(3)
 855                  normx(3)=vect1(1)*vectx(2)-vect1(2)*vectx(1)
 856                  normv(1)=vect1(2)*vectv(3)-vect1(3)*vectv(2)
 857                  normv(2)=vect1(3)*vectv(1)-vect1(1)*vectv(3)
 858                  normv(3)=vect1(1)*vectv(2)-vect1(2)*vectv(1)
 859            c      write(*,*)normu(1),normu(2),normu(3)
 860            c
 861                  normumag=sqrt(normu(1)**2+normu(2)**2+normu(3)**2)
 862                  normxmag=sqrt(normx(1)**2+normx(2)**2+normx(3)**2)
 863                  normvmag=sqrt(normv(1)**2+normv(2)**2+normv(3)**2)
 864 brash 1.12       normu(1)=normu(1)/normumag
 865                  normu(2)=normu(2)/normumag
 866                  normu(3)=normu(3)/normumag
 867 brash 1.14       normx(1)=normx(1)/normxmag
 868                  normx(2)=normx(2)/normxmag
 869                  normx(3)=normx(3)/normxmag
 870                  normv(1)=normv(1)/normvmag
 871                  normv(2)=normv(2)/normvmag
 872                  normv(3)=normv(3)/normvmag
 873 brash 1.12 c      write(*,*)normumag
 874            c
 875                  du(1)=xa-xu
 876                  du(2)=ya-yu
 877                  du(3)=za-zu      
 878                  dx(1)=xa-xx
 879                  dx(2)=ya-yx
 880                  dx(3)=za-zx      
 881                  dv(1)=xa-xv
 882                  dv(2)=ya-yv
 883                  dv(3)=za-zv
 884            c
 885            c
 886            c     distance formula
 887                  distu=du(1)*normu(1)+du(2)*normu(2)+du(3)*normu(3)     
 888                  distx=dx(1)*normx(1)+dx(2)*normx(2)+dx(3)*normx(3)     
 889                  distv=dv(1)*normv(1)+dv(2)*normv(2)+dv(3)*normv(3)     
 890            c
 891 brash 1.14       if(distu.gt.1.0.or.distx.gt.1.0.or.distv.gt.1.0)
 892                 &            idflag=.true. 
 893                  if(distu.gt.1.28.or.distx.gt.1.28.or.distv.gt.1.28)then
 894                    write(*,*)'Problem Child !!!'
 895                    write(*,*)'distance calculations .....'
 896                    write(*,*)xa,ya,za
 897            c        write(*,*)vect1(1),vect1(2),vect1(3)
 898                    write(*,*)xu,yu,zu
 899            c        write(*,*)vectu(1),vectu(2),vectu(3)
 900                    write(*,*)xx,yx,zx
 901            c        write(*,*)vectx(1),vectx(2),vectx(3)
 902                    write(*,*)xv,yv,zv
 903            c        write(*,*)vectv(1),vectv(2),vectv(3)
 904                    write(*,*)'normalization factors'
 905                    write(*,*)normu(1),normu(2),normu(3)
 906                    write(*,*)normumag
 907                    write(*,*)normx(1),normx(2),normx(3)
 908                    write(*,*)normxmag
 909                    write(*,*)normv(1),normv(2),normv(3)
 910                    write(*,*)normvmag
 911                    write(*,*)'Drift distance: ',distu, distx, distv
 912 brash 1.14       endif
 913 brash 1.12 c      
 914                  return
 915                  end
 916            
 917 brash 1.11 
 918                  subroutine calc_theta_phi(xin1,yin1,zin1,xin2,yin2,zin2,
 919                 &     xsc1,ysc1,zsc1,xsc2,ysc2,zsc2,theta,phi)
 920            c
 921                  implicit none
 922 brash 1.12       include 'fpp_local.h'
 923                  include 'geant_local.h'
 924 brash 1.11 c
 925                  real*8 xin1,yin1,zin1,xin2,yin2,zin2
 926                  real*8 xsc1,ysc1,zsc1,xsc2,ysc2,zsc2,theta,phi
 927                  real*8 ftheta, fphi, fpsi
 928 brash 1.12       real*8 lin,lout,theta_ejb,phi_ejb
 929 brash 1.11 c
 930                  real invect(1:3)
 931                  real scvect(1:3)
 932                  real scvect2(1:3)
 933 brash 1.12       real in(1:3)
 934                  real out(1:3)
 935                  real scat(1:3)
 936 brash 1.11 c
 937                  invect(1)=xin2-xin1
 938                  invect(2)=yin2-yin1
 939                  invect(3)=zin2-zin1
 940                  scvect(1)=xsc2-xsc1
 941                  scvect(2)=ysc2-ysc1
 942                  scvect(3)=zsc2-zsc1
 943 brash 1.12 c      write(*,*)'INCOMING: ',invect(1),invect(2),invect(3)
 944            c      write(*,*)'SCATTERED: ',scvect(1),scvect(2),scvect(3)
 945            c
 946            c EJB calculation of theta and phi
 947            c
 948                  in(1)=invect(1)/invect(3)
 949                  in(2)=invect(2)/invect(3)
 950                  in(3)=invect(3)/invect(3)
 951                  out(1)=scvect(1)/scvect(3)
 952                  out(2)=scvect(2)/scvect(3)
 953                  out(3)=scvect(3)/scvect(3)
 954                  lin=sqrt(in(1)**2+in(2)**2+in(3)**2)
 955                  lout=sqrt(out(1)**2+out(2)**2+out(3)**2)
 956                  scat(1)=out(1)-in(1)
 957                  scat(2)=out(2)-in(2)
 958                  scat(3)=out(3)
 959                  x_ejb=scat(1)
 960                  y_ejb=scat(2)
 961                  z_ejb=scat(3)
 962                  if(scat(1).ge.0.0.and.scat(2).gt.0.0)then
 963                     phi_ejb=atan(scat(1)/scat(2))*57.2957795
 964 brash 1.12       else if(scat(1).ge.0.0.and.scat(2).lt.0.0)then
 965                     phi_ejb=atan(scat(1)/scat(2))*57.2957795+180.00
 966                  else if(scat(1).le.0.0.and.scat(2).lt.0.0)then
 967                     phi_ejb=atan(scat(1)/scat(2))*57.2957795+180.00
 968                  else if(scat(1).le.0.0.and.scat(2).gt.0.0)then
 969                     phi_ejb=atan(scat(1)/scat(2))*57.2957795+360.00
 970                  endif
 971            c
 972                  theta_ejb=acos((in(1)*out(1)+in(2)*out(2)+in(3)*out(3))/
 973                 &     (lin*lout))*57.2957795
 974            c      write(*,*)'EJB Incoming Vector = ',in(1),in(2),in(3)
 975            c      write(*,*)'EJB Outgoing Vector = ',out(1),out(2),out(3)
 976            c      write(*,*)'EJB Scattered Vector = ',scat(1),scat(2),scat(3)
 977            c      write(*,*)'EJB Thetas = ',theta_ejb,phi_ejb
 978 brash 1.11 c
 979 brash 1.12 c end EJB calculation
 980            c      
 981            
 982            
 983 brash 1.11       ftheta=acos(invect(3)/sqrt(invect(1)**2+invect(3)**2))
 984                  fphi=acos(invect(3)/sqrt(invect(2)**2+invect(3)**2))
 985                  fpsi=acos(sqrt(invect(2)**2+invect(3)**2)/sqrt(invect(1)**2
 986                 &     +invect(2)**2+invect(3)**2))
 987            c
 988 brash 1.12 c      write(*,*)'ftheta, fphi, fpsi',
 989            c     &    ftheta*57.296,fphi*57.296,fpsi*57.296
 990 brash 1.11       scvect2(1)=scvect(1)*cos(fpsi)-sin(fpsi)*(scvect(2)*sin(fphi)
 991                 &     +scvect(3)*cos(fphi))
 992                  scvect2(2)=scvect(2)*cos(fphi)-scvect(3)*sin(fphi)
 993                  scvect2(3)=scvect(1)*sin(fpsi)+cos(fpsi)*(scvect(2)*sin(fphi)
 994                 &     +scvect(3)*cos(fphi))
 995            c
 996 brash 1.12 c      write(*,*)'SCATTERED 2: ',scvect2(1),scvect2(2),scvect2(3)
 997 brash 1.11       theta=atan(sqrt(scvect2(1)**2+scvect2(2)**2)/scvect2(3))*57.2957795
 998                  phi=atan(scvect2(1)/scvect2(2))*57.2957795
 999                  if (scvect2(1).lt.0.0.and.scvect2(2).gt.0.0) 
1000                 &  phi=phi+360.00
1001                  if (scvect2(1).lt.0.0.and.scvect2(2).lt.0.0) 
1002                 &  phi=phi+180.00
1003                  if (scvect2(1).gt.0.0.and.scvect2(2).lt.0.0) 
1004                 &  phi=phi+180.00
1005 brash 1.12 
1006            c      write(*,*)'Theta,phi =',theta,phi
1007 brash 1.11 
1008            c
1009                  return
1010                  end
1011            
1012 brash 1.7  
1013                  
1014            
1015                  
1016            
1017                  
1018                  
1019                  
1020 jones 1.1        

Analyzer/Replay: Mark Jones, Documents: Stephen Wood
Powered by
ViewCVS 0.9.2-cvsgraph-1.4.0