(file) Return to gustep.f CVS log (file) (dir) Up to [HallC] / geant_gep / src

   1 jones 1.1       subroutine gustep
   2           c
   3           c     this subroutine was written by jpsullivan april 21-22, 1993
   4           c     the tracking realated part is relatively simple -- if the
   5           c     particle leave the volume called 'targ', throw it away.
   6           c     it also makes a bunch of histograms
   7           c     
   8           c     *keep,gctrak.
   9           *--   author :
  10 brash 1.13 
  11                  implicit none
  12            
  13                  integer*4 mylast
  14                  integer*4 nhu,nhv,nhx
  15            
  16 jones 1.1        common/gctrak/vect(7),getot,gekin,vout(7),nmec,lmec(30),namec(30)
  17                 +     ,nstep ,maxnst,destep,destel,safety,sleng 
  18                 +     ,step  ,snext ,sfield
  19                 +     ,tofg  ,gekrat,upwght,ignext,inwvol,istop ,idecad,iekbin
  20                 +     , ilosl, imull,ingoto,nldown,nlevin,nlvsav,istory
  21            c     
  22                  integer nmec,lmec,namec,nstep ,maxnst,ignext,inwvol,istop
  23                 +     ,idecad,iekbin,ilosl, imull,ingoto,nldown,nlevin
  24                 +     ,nlvsav,istory
  25                  real  vect,getot,gekin,vout,destep,destel,safety,sleng ,step
  26                 +     ,snext,sfield,tofg  ,gekrat,upwght
  27            c     end gctrak
  28            *     keep,gcvolu.
  29            *--   author :
  30                  common/gcvolu/nlevel,names(15),number(15),
  31                 +     lvolum(15),lindex(15),infrom,nlevmx,nldev(15),linmx(15),
  32                 +     gtran(3,15),grmat(10,15),gonly(15),glx(3)
  33            c     
  34                  integer nlevel,number,lvolum,lindex,infrom,nlevmx,
  35                 +     nldev,linmx
  36                  character*4 names
  37 jones 1.1        real gtran,grmat,gonly,glx
  38            c     end gcvolu
  39            c     
  40            *     keep,gcbank.
  41            *--   author :
  42                  integer iq,lq,nzebra,ixstor,ixdiv,ixcons,lmain,lr1
  43                  integer kwbank,kwwork,iws
  44                  real gversn,zversn,fendq,ws,q
  45            c     
  46                  parameter (kwbank=69000,kwwork=5200)
  47                  common/gcbank/nzebra,gversn,zversn,ixstor,ixdiv,ixcons,fendq(16)
  48                 +     ,lmain,lr1,ws(kwbank)
  49                  dimension iq(2),q(2),lq(8000),iws(2)
  50                  equivalence (q(1),iq(1),lq(9)),(lq(1),lmain),(iws(1),ws(1))
  51                  common/gclink/jdigi ,jdraw ,jhead ,jhits ,jkine ,jmate ,jpart
  52                 +     ,jrotm ,jrung ,jset  ,jstak ,jgstat,jtmed ,jtrack,jvertx
  53                 +     ,jvolum,jxyz  ,jgpar ,jgpar2,jsklt
  54            c     
  55                  integer       jdigi ,jdraw ,jhead ,jhits ,jkine ,jmate ,jpart
  56                 +     ,jrotm ,jrung ,jset  ,jstak ,jgstat,jtmed ,jtrack,jvertx
  57                 +     ,jvolum,jxyz  ,jgpar,jgpar2 ,jsklt
  58 jones 1.1  c     
  59            *     keep,gcking.
  60            *--   author :
  61                  common/gcking/kcase,ngkine,gkin(5,100),tofd(100),iflgk(100)
  62                  integer       kcase,ngkine ,iflgk
  63                  real          gkin,tofd
  64 brash 1.16       character*4 chcase
  65 jones 1.1  c     end gcking
  66            c     
  67            *     keep,gckine.
  68            *--   author :
  69            *--   author :
  70                  integer       ikine,itra,istak,ivert,ipart,itrtyp,napart,ipaold
  71                  real          pkine,amass,charge,tlife,vert,pvert
  72                  common/gckine/ikine,pkine(10),itra,istak,ivert,ipart,itrtyp
  73                 +     ,napart(5),amass,charge,tlife,vert(3),pvert(4),ipaold
  74            c     end gckine
  75            c     
  76                  integer ihset,ihdet,iset,idet,idtype,nvname,numbv
  77                  common/gcsets/ihset,ihdet,iset,idet,idtype,nvname,numbv(20)
  78                  real x1,y1,z1,lpar,v1,v2,v3,newdist,x1new,y1new,z1new
  79                  real xstr,ystr,zstr,xstrnew,ystrnew,zstrnew
  80                  real rotmat2,rotmat3,rotmat4,rotmat1
  81 brash 1.6  c
  82 jones 1.1        common/geomstep/rotmat1(3,3),rotmat2(3,3),rotmat3(3,3),
  83                 &     rotmat4(3,3)
  84            c     
  85                  include 'fpp_local.h'
  86                  include 'geant_local.h'
  87            c      include 'parameter.h'
  88            c      include 'espace_type.h'
  89            c      include 'detector.h'
  90            c      include 'transport.h'
  91            c      include 'option.h'
  92            c     
  93            c     
  94                  integer i,make_hist,ioff,ihit,ieffcheck
  95                  real pt_pi,ppar_pi,arg1,arg2,rapid_pi,pchmb,hits(6)
  96                  real a,b,c,beta,z,y,straw,ypath,rndm(3),ycompare
  97 brash 1.14       logical idflag
  98                  real*8 d1uetemp,d1xetemp,d1vetemp
  99 brash 1.2  c      write(6,*)'entering gustep'
 100            c      write(6,*)'inwvol =',inwvol
 101            c      write(6,*)'position =',vect(1),vect(2),vect(3)
 102            c      write(6,*)'names =',names(nlevel)
 103 jones 1.1  c     
 104            c
 105            c
 106                  if ( ngkine.gt.0. ) then
 107                     do i=1,nmec
 108                        if ( lmec(i).eq.12 ) then
 109            c               write ( 6,* ) ' gustep: hadronic interaction'
 110            c               write ( 6,* ) ' nevent=',nevent
 111                        end if
 112                     end do
 113                     mylast = min(100,ngkine)
 114                     do i=1,mylast
 115 brash 1.16 c         write(*,*)'Secondaries Loop ...',i,' particle = ',gkin(5,i)
 116            c         if(gkin(5,i).eq.14)then
 117            c		write(*,*)'Total E =',gkin(4,i)
 118            c		write(*,*)'KE = ',gkin(4,i)-.93827
 119            c	 elseif(gkin(5,i).eq.8.or.gkin(5,i).eq.9)then
 120            c		write(*,*)'Total E =',gkin(4,i)
 121            c		write(*,*)'KE = ',gkin(4,i)-.1395
 122            c	 endif	
 123                     if(gkin(5,i).eq.14.or.gkin(5,i).eq.8.or.
 124                 &          gkin(5,i).eq.9)then
 125            	 	iflgk(i)=1
 126            	 else
 127            	 	iflgk(i)=-1
 128            	 endif
 129            c            iflgk(i) = 1
 130            c            if ( gkin(5,i).eq.4 ) iflgk(i) = 0
 131            c            if ( gkin(4,i).gt.0.001 ) iflgk(i)=0
 132 jones 1.1           end do
 133            c         n_2nd = n_2nd + ngkine
 134                  endif
 135            c     
 136            c  the following call makes sure all of the secondary particles
 137            c  get tracked too (provided the flag iflgk(i) for that particle
 138            c  was set in the loop above -- this point is not correctly or
 139            c  clearly documented in the version of the geant manual i have).
 140            c
 141 brash 1.16       if(sectrack)then
 142            c       write(*,*)'SECONDARY TRACKING ...'
 143            c       write(*,*)'Number of secondaries = ',ngkine
 144            c       call uhtoc(kcase,4,chcase,4)
 145            c       write(*,*)'Source of interaction = ',chcase
 146            c       do i=1,ngkine
 147            c	write(*,*)'Secondary ',i,' ID =',gkin(5,i)
 148            c        if(gkin(5,i).eq.14.or.gkin(5,i).eq.8.or.
 149            c     &         gkin(5,i).eq.9)then
 150            c		iflgk(i)=1
 151            c	else
 152            c		iflgk(i)=-1
 153            c	endif
 154            c       enddo
 155            
 156                   call gsking ( 0 )
 157                  endif
 158 jones 1.1  c     
 159 brash 1.6  c      write(*,*)'In GUSTEP: ... names(nlevel) = ',names(nlevel)
 160 brash 1.11 c      write(*,*)'In GUSTEP: ... inwvol = ',inwvol
 161 brash 1.6  
 162 jones 1.1        make_hist = 0
 163                  if ( inwvol.eq.1 .and. names(nlevel).eq."hall" ) then
 164                     make_hist=1
 165            c     
 166            c     if we get here, the tracking is done for this track
 167            c     (istop=1) but make a bunch of histograms before exitting
 168            c     note that ipart=8 means a pi+ and 9 is a pi-
 169            c     
 170            c     istop = 1
 171                  else if ( istop.ne.0.and. names(nlevel).eq."aira" ) then
 172                     make_hist=0
 173                  else if ( istop.ne.0.and. names(nlevel).eq."airb" ) then
 174                     make_hist=0
 175                  else if ( istop.ne.0.and. names(nlevel).eq."airc" ) then
 176                     make_hist=0
 177                  else if ( istop.ne.0.and. names(nlevel).eq."aird" ) then
 178                     make_hist=0
 179 brash 1.2        else if ( istop.ne.0.and. names(nlevel).eq."aire" ) then
 180                     make_hist=0
 181                  else if ( istop.ne.0.and. names(nlevel).eq."airf" ) then
 182                     make_hist=0
 183 brash 1.6        else if ( names(nlevel).eq."airg" ) then
 184            c         write(*,*)'In airg ... inwvol = ',inwvol
 185            c         write(*,*)'Z-value = ',vect(3)
 186                     if (istop.ne.0) then
 187                        make_hist=0
 188                     endif
 189                  else if ( names(nlevel).eq."HALL" ) then
 190            c         write(*,*)'In HALL ... inwvol = ',inwvol
 191            c         write(*,*)'Z-value = ',vect(3)
 192                     if (istop.ne.0) then
 193                        make_hist=0
 194                     endif
 195 brash 1.2        else if ( istop.ne.0.and. names(nlevel).eq."airh" ) then
 196                     make_hist=0
 197                  else if ( istop.ne.0.and. names(nlevel).eq."hch1" ) then
 198                     make_hist=0
 199 brash 1.11       else if ( names(nlevel).eq."hch2" ) then
 200            c	 write(*,*)'In hch2'
 201                     if(inwvol.eq.1) then
 202            c           write(6,*)'Coordinates at hch2'
 203            c           write(6,*)'x=',vect(1),' y=',vect(2),' z=',vect(3)
 204                       xahch2=vect(1)
 205                       yahch2=vect(2)
 206                       zahch2=vect(3)
 207                     endif
 208                     if(inwvol.eq.2) then
 209                        xbhch2=vect(1)
 210                        ybhch2=vect(2)
 211                        zbhch2=vect(3)
 212                     endif
 213            
 214                     if ( istop.ne.0 ) then
 215                        make_hist=0
 216                     endif
 217 brash 1.4        else if ( names(nlevel).eq."fch1" ) then
 218 brash 1.6  c         write(*,*)'In fch1 ... inwvol = ',inwvol
 219 brash 1.4           if(inwvol.eq.1) then
 220 brash 1.5  c           write(6,*)'Coordinates at fch1'
 221            c           write(6,*)'x=',vect(1),' y=',vect(2),' z=',vect(3)
 222 brash 1.6             x1a=vect(1)
 223                       y1a=vect(2)
 224                       z1a=vect(3)
 225 brash 1.4           endif
 226 brash 1.16          if(inwvol.eq.2.and.(ipart.eq.8.or.ipart.eq.9.
 227                 &         or.ipart.eq.14)) then
 228 brash 1.6              x1b=vect(1)
 229                        y1b=vect(2)
 230                        z1b=vect(3)
 231            
 232 brash 1.13             call get_wire_numbers(x1a,y1a,z1a,x1b,y1b,z1b,nhu,nhx,nhv,
 233 brash 1.12      &           n1ua,n1xa,n1va,n1ub,n1xb,n1vb)
 234 brash 1.6  
 235 brash 1.16             nhu1=nhu1+1
 236                        nhx1=nhx1+1
 237                        nhv1=nhv1+1
 238 brash 1.13 
 239                        if(nhu.eq.1.and.nhv.eq.1.and.nhx.eq.1) then
 240 brash 1.14                idflag=.false.
 241 brash 1.12                call get_drift_distance_ejb(x1a,y1a,z1a,x1b,y1b,z1b,
 242 brash 1.14      &              n1ua,n1xa,n1va,d1ue,d1xe,d1ve,idflag)
 243 brash 1.16 c               call get_drift_distance(x1a,y1a,z1a,x1b,y1b,z1b,
 244            c     &              n1ua,n1xa,n1va,d1u,d1x,d1v)
 245 brash 1.12             else
 246                           call get_drift_distance_ejb(x1a,y1a,z1a,x1b,y1b,z1b,
 247 brash 1.14      &              n1ua,n1xa,n1va,d1ue,d1xe,d1ve,idflag)
 248                           d1uetemp=d1ue
 249                           d1xetemp=d1xe
 250                           d1vetemp=d1ve
 251 brash 1.12                call get_drift_distance_ejb(x1a,y1a,z1a,x1b,y1b,z1b,
 252 brash 1.14      &              n1ub,n1xb,n1vb,d1ue,d1xe,d1ve,idflag)
 253                           if(idflag)
 254                 &             write(*,*)'Drift Distance 1a: ',
 255                 &                 d1uetemp,d1xetemp,d1vetemp
 256                           if(idflag)
 257                 &             write(*,*)'Drift Distance 1b: ',d1ue,d1xe,d1ve
 258 brash 1.16 c               call get_drift_distance(x1a,y1a,z1a,x1b,y1b,z1b,
 259            c     &              n1ua,n1xa,n1va,d1u,d1x,d1v)
 260            c               if(idflag)
 261            c     &             write(*,*)'Drift Distance 1c: ',d1u,d1x,d1v
 262            c               call get_drift_distance(x1a,y1a,z1a,x1b,y1b,z1b,
 263            c     &              n1ub,n1xb,n1vb,d1u,d1x,d1v)
 264            c               if(idflag)
 265            c     &             write(*,*)'Drift Distance 1d: ',d1u,d1x,d1v
 266 brash 1.12             endif
 267 brash 1.11           
 268 brash 1.16             write(*,*)'Hit in first chamber ...'
 269                        write(*,*)'Number of Hits: ',nhu1,nhx1,nhv1
 270 brash 1.12                
 271 brash 1.6           endif
 272            
 273                     if ( istop.ne.0 ) then
 274                        make_hist=0
 275                     endif
 276                  else if ( names(nlevel).eq."fch2" ) then
 277            c         write(*,*)'In fch2 ... inwvol = ',inwvol
 278            c         write(*,*)'Z-value = ',vect(3)
 279                     if(inwvol.eq.1) then
 280                       x2a=vect(1)
 281                       y2a=vect(2)
 282                       z2a=vect(3)
 283                     endif
 284 brash 1.16          if(inwvol.eq.2.and.(ipart.eq.8.or.ipart.eq.9
 285                 &      .or.ipart.eq.14)) then
 286 brash 1.6              x2b=vect(1)
 287                        y2b=vect(2)
 288                        z2b=vect(3)
 289            
 290 brash 1.13             call get_wire_numbers(x2a,y2a,z2a,x2b,y2b,z2b,nhu,nhx,nhv,
 291 brash 1.12      &           n2ua,n2xa,n2va,n2ub,n2xb,n2vb)
 292 brash 1.11 
 293 brash 1.16             nhu2=nhu2+1
 294                        nhx2=nhx2+1
 295                        nhv2=nhv2+1
 296 brash 1.13 
 297                        if(nhu.eq.1.and.nhv.eq.1.and.nhx.eq.1) then
 298 brash 1.12                call get_drift_distance_ejb(x2a,y2a,z2a,x2b,y2b,z2b,
 299 brash 1.14      &              n2ua,n2xa,n2va,d2ue,d2xe,d2ve,idflag)
 300 brash 1.16 c               call get_drift_distance(x2a,y2a,z2a,x2b,y2b,z2b,
 301            c     &              n2ua,n2xa,n2va,d2u,d2x,d2v)
 302 brash 1.12             else
 303                           call get_drift_distance_ejb(x2a,y2a,z2a,x2b,y2b,z2b,
 304 brash 1.14      &              n2ua,n2xa,n2va,d2ue,d2xe,d2ve,idflag)
 305            c               write(*,*)'Drift Distance 2a: ',d2ue,d2xe,d2ve
 306 brash 1.12                call get_drift_distance_ejb(x2a,y2a,z2a,x2b,y2b,z2b,
 307 brash 1.14      &              n2ub,n2xb,n2vb,d2ue,d2xe,d2ve,idflag)
 308            c               write(*,*)'Drift Distance 2b: ',d2ue,d2xe,d2ve
 309 brash 1.16 c               call get_drift_distance(x2a,y2a,z2a,x2b,y2b,z2b,
 310            c     &              n2ua,n2xa,n2va,d2u,d2x,d2v)
 311 brash 1.14 c               write(*,*)'Drift Distance 2c: ',d2u,d2x,d2v
 312 brash 1.16 c               call get_drift_distance(x2a,y2a,z2a,x2b,y2b,z2b,
 313            c     &              n2ub,n2xb,n2vb,d2u,d2x,d2v)
 314 brash 1.14 c               write(*,*)'Drift Distance 2c: ',d2u,d2x,d2v
 315 brash 1.12             endif
 316 brash 1.15 
 317                       call calc_theta_phi(xahch2,yahch2,zahch2,
 318                 &            xbhch2,ybhch2,zbhch2,
 319                 &           x1a,y1a,z1a,x2b,y2b,z2b,
 320                 &            theta_front,phi_front)
 321 brash 1.8  
 322 brash 1.16             write(*,*)'Hit in second chamber ...'
 323                        write(*,*)'Number of hits: ',nhu2,nhx2,nhv2
 324 brash 1.6  
 325                     endif
 326            c
 327                     if ( istop.ne.0 ) then
 328                        make_hist=0
 329                     endif
 330                  else if ( names(nlevel).eq."fch3" ) then
 331                     if(inwvol.eq.1) then
 332                       x3a=vect(1)
 333                       y3a=vect(2)
 334                       z3a=vect(3)
 335                     endif
 336 brash 1.16          if(inwvol.eq.2.and.(ipart.eq.8.or.ipart.eq.9
 337                 &      .or.ipart.eq.14)) then
 338 brash 1.6              x3b=vect(1)
 339                        y3b=vect(2)
 340                        z3b=vect(3)
 341            
 342 brash 1.13             call get_wire_numbers(x3a,y3a,z3a,x3b,y3b,z3b,nhu,nhx,nhv,
 343 brash 1.12      &           n3ua,n3xa,n3va,n3ub,n3xb,n3vb)
 344 brash 1.11 
 345 brash 1.16             nhu3=nhu3+1
 346                        nhx3=nhx3+1
 347                        nhv3=nhv3+1
 348 brash 1.13 
 349                        if(nhu.eq.1.and.nhv.eq.1.and.nhx.eq.1) then
 350 brash 1.12                call get_drift_distance_ejb(x3a,y3a,z3a,x3b,y3b,z3b,
 351 brash 1.14      &              n3ua,n3xa,n3va,d3ue,d3xe,d3ve,idflag)
 352 brash 1.16 c               call get_drift_distance(x3a,y3a,z3a,x3b,y3b,z3b,
 353            c     &              n3ua,n3xa,n3va,d3u,d3x,d3v)
 354 brash 1.12             else
 355                           call get_drift_distance_ejb(x3a,y3a,z3a,x3b,y3b,z3b,
 356 brash 1.14      &              n3ua,n3xa,n3va,d3ue,d3xe,d3ve,idflag)
 357            c               write(*,*)'Drift Distance 3a: ',d3ue,d3xe,d3ve
 358 brash 1.12                call get_drift_distance_ejb(x3a,y3a,z3a,x3b,y3b,z3b,
 359 brash 1.14      &              n3ub,n3xb,n3vb,d3ue,d3xe,d3ve,idflag)
 360            c               write(*,*)'Drift Distance 3b: ',d3ue,d3xe,d3ve
 361 brash 1.16 c               call get_drift_distance(x3a,y3a,z3a,x3b,y3b,z3b,
 362            c     &              n3ua,n3xa,n3va,d3u,d3x,d3v)
 363 brash 1.14 c               write(*,*)'Drift Distance 3c: ',d3u,d3x,d3v
 364 brash 1.12             endif
 365                      
 366 brash 1.8  
 367 brash 1.16             write(*,*)'Hit in third chamber ...'
 368                        write(*,*)'Number of Hits: ',nhu3,nhx3,nhv3
 369 brash 1.6  
 370                     endif
 371            c
 372                     if ( istop.ne.0 ) then
 373                        make_hist=0
 374                     endif     
 375                  else if ( names(nlevel).eq."fch4" ) then
 376                     if(inwvol.eq.1) then
 377                       x4a=vect(1)
 378                       y4a=vect(2)
 379                       z4a=vect(3)
 380                     endif
 381 brash 1.16          if(inwvol.eq.2.and.(ipart.eq.8.or.ipart.eq.9
 382                 &      .or.ipart.eq.14)) then
 383 brash 1.6              x4b=vect(1)
 384                        y4b=vect(2)
 385                        z4b=vect(3)
 386            
 387 brash 1.13             call get_wire_numbers(x4a,y4a,z4a,x4b,y4b,z4b,nhu,nhx,nhv,
 388 brash 1.12      &           n4ua,n4xa,n4va,n4ub,n4xb,n4vb)
 389 brash 1.11 
 390 brash 1.16             nhu4=nhu4+1
 391                        nhx4=nhx4+1
 392                        nhv4=nhv4+1
 393 brash 1.13 
 394                        if(nhu.eq.1.and.nhv.eq.1.and.nhx.eq.1) then
 395 brash 1.12                call get_drift_distance_ejb(x4a,y4a,z4a,x4b,y4b,z4b,
 396 brash 1.14      &              n4ua,n4xa,n4va,d4ue,d4xe,d4ve,idflag)
 397 brash 1.16 c               call get_drift_distance(x4a,y4a,z4a,x4b,y4b,z4b,
 398            c     &              n4ua,n4xa,n4va,d4u,d4x,d4v)
 399 brash 1.12             else
 400                           call get_drift_distance_ejb(x4a,y4a,z4a,x4b,y4b,z4b,
 401 brash 1.14      &              n4ua,n4xa,n4va,d4ue,d4xe,d4ve,idflag)
 402            c               write(*,*)'Drift Distance 4a: ',d4ue,d4xe,d4ve
 403 brash 1.12                call get_drift_distance_ejb(x4a,y4a,z4a,x4b,y4b,z4b,
 404 brash 1.14      &              n4ub,n4xb,n4vb,d4ue,d4xe,d4ve,idflag)
 405            c               write(*,*)'Drift Distance 4b: ',d4ue,d4xe,d4ve
 406 brash 1.16 c               call get_drift_distance(x4a,y4a,z4a,x4b,y4b,z4b,
 407            c     &              n4ua,n4xa,n4va,d4u,d4x,d4v)
 408 brash 1.14 c               write(*,*)'Drift Distance 4c: ',d4u,d4x,d4v
 409 brash 1.12             endif
 410                      
 411 brash 1.8  
 412 brash 1.16             write(*,*)'Hit in fourth chamber ...'
 413                        write(*,*)'Wire Numbers: ',nhu4,nhx4,nhv4
 414            c            write(*,*)'Particle ID: ',ipart
 415 brash 1.6  
 416                     endif
 417            c
 418 brash 1.4           if ( istop.ne.0 ) then
 419                        make_hist=0
 420                     endif
 421 brash 1.2        else if ( istop.ne.0.and. names(nlevel).eq."sci1" ) then
 422                     make_hist=0
 423                  else if ( names(nlevel).eq."anl1" ) then
 424 jones 1.1           if(inwvol.eq.1) then
 425 brash 1.5  c           write(6,*)'We have a hit in the fist analyzer at'
 426            c           write(6,*)'x=',vect(1),' y=',vect(2),' z=',vect(3)
 427 brash 1.4             xdet=vect(1)
 428                       ydet=vect(2)
 429                       zdet=vect(3)
 430 jones 1.1           endif
 431                     if ( istop.ne.0 ) then
 432                        make_hist=0
 433                     endif
 434                  end if
 435            c     
 436            c     
 437            c     store current track parameters (including position ) in jxyz structure.
 438            c     
 439                  call gsxyz
 440            c     
 441            c     moved histograming stuff to gulast
 442            c     
 443            c     write(6,*)'done in gustep'
 444             9999 return
 445 brash 1.6        end
 446            
 447 brash 1.13       subroutine get_wire_numbers(xa,ya,za,xb,yb,zb,nhu,nhx,nhv,
 448 brash 1.12      %     nu1,nx1,nv1,nu2,nx2,nv2)
 449 brash 1.6  
 450 brash 1.7        implicit none
 451            
 452 brash 1.6        real*8 xa,ya,za,xb,yb,zb
 453 brash 1.12       integer*4 nu1,nx1,nv1
 454                  integer*4 nu2,nx2,nv2
 455 brash 1.13       integer*4 nhu,nhx,nhv
 456 brash 1.6  
 457                  real*8 zc,zu,zx,zv,zt,xp,yp,xu,xx,xv,yu,yx,yv,uw,xw,vw
 458 brash 1.7        real*8 anu,anx,anv
 459 brash 1.6  
 460 brash 1.12       nu2=0
 461                  nx2=0
 462                  nv2=0
 463            c
 464 brash 1.6  c We have the (x,y,z) coordinates of the entrance (a) and exit (b) points
 465            c of the track.  We can use this information to calculate the wire numbers that
 466            c were hit in each plane.
 467            c
 468                  zc=(zb-za)/2.0+za
 469                  zu=zc-1.60
 470                  zx=zc
 471                  zv=zc+1.60
 472                  zt=(zb-za)
 473                  xp=(xb-xa)/zt
 474                  yp=(yb-ya)/zt
 475 brash 1.12 c
 476 brash 1.14 c Project to the FRONT of the "cell" associated with each plane.
 477            c
 478                  xu=xa+xp*(zu-za-0.8)
 479                  yu=ya+yp*(zu-za-0.8)
 480                  xx=xa+xp*(zx-za-0.8)
 481                  yx=ya+yp*(zx-za-0.8)
 482                  xv=xa+xp*(zv-za-0.8)
 483                  yv=ya+yp*(zv-za-0.8)      
 484            c
 485            c      xu=xa
 486            c      yu=ya
 487            c      xx=xa
 488            c      yx=ya
 489            c      xv=xa
 490            c      yv=ya
 491 brash 1.6  c
 492                  uw=(xu+yu)/sqrt(2.0)
 493                  xw=xx
 494                  vw=(-xv+yv)/sqrt(2.0)
 495 brash 1.7  c
 496 brash 1.8  c      write(*,*)'********************'
 497 brash 1.10 c      write(*,*)'A: ',xa,ya,za
 498            c      write(*,*)'B: ',xb,yb,zb
 499            c      write(*,*)'U: ',xu,yu,zu
 500            c      write(*,*)'X: ',xx,yx,zx
 501            c      write(*,*)'V: ',xv,yv,zv
 502            c      write(*,*)'W: ',uw,xw,vw
 503 brash 1.14 c      write(*,*)'********************'
 504 brash 1.7  c     
 505                  anu=(-uw-3.592+104.0)/2.0
 506                  anx=(-xw-5.080+84.0)/2.0
 507                  anv=(vw-3.592+104.0)/2.0
 508            c
 509 brash 1.10 c      write(*,*)'Wires: ',anu,anx,anv
 510            c      write(*,*)'********************'
 511 brash 1.12       nu1=anu
 512                  nv1=anv
 513                  nx1=anx
 514                  if((anu-nu1).ge.0.500)nu1=nu1+1
 515                  if((anx-nx1).ge.0.500)nx1=nx1+1
 516                  if((anv-nv1).ge.0.500)nv1=nv1+1
 517            c      write(*,*)'using front of chamber: ',nu1,nx1,nv1
 518            c
 519 brash 1.14 c Now project to the BACK of the "cell" associated with each plane.
 520 brash 1.12 c
 521 brash 1.14       xu=xa+xp*(zu-za+0.8)
 522                  yu=ya+yp*(zu-za+0.8)
 523                  xx=xa+xp*(zx-za+0.8)
 524                  yx=ya+yp*(zx-za+0.8)
 525                  xv=xa+xp*(zv-za+0.8)
 526                  yv=ya+yp*(zv-za+0.8)      
 527            c
 528            c      xu=xb
 529            c      yu=yb
 530            c      xx=xb
 531            c      yx=yb
 532            c      xv=xb
 533            c      yv=yb
 534 brash 1.12 c
 535                  uw=(xu+yu)/sqrt(2.0)
 536                  xw=xx
 537                  vw=(-xv+yv)/sqrt(2.0)
 538 brash 1.7  c
 539 brash 1.12 c      write(*,*)'********************'
 540            c      write(*,*)'A: ',xa,ya,za
 541            c      write(*,*)'B: ',xb,yb,zb
 542            c      write(*,*)'U: ',xu,yu,zu
 543            c      write(*,*)'X: ',xx,yx,zx
 544            c      write(*,*)'V: ',xv,yv,zv
 545 brash 1.10 c      write(*,*)'W: ',uw,xw,vw
 546            c      write(*,*)'********************'
 547 brash 1.12 c     
 548                  anu=(-uw-3.592+104.0)/2.0
 549                  anx=(-xw-5.080+84.0)/2.0
 550                  anv=(vw-3.592+104.0)/2.0
 551            c
 552            c      write(*,*)'Wires: ',anu,anx,anv
 553            c      write(*,*)'********************'
 554                  nu2=anu
 555                  nv2=anv
 556                  nx2=anx
 557                  if((anu-nu2).ge.0.500)nu2=nu2+1
 558                  if((anx-nx2).ge.0.500)nx2=nx2+1
 559                  if((anv-nv2).ge.0.500)nv2=nv2+1
 560 brash 1.13       nhu=1
 561                  nhx=1
 562                  nhv=1
 563                  if(nu1.ne.nu2)nhu=2
 564                  if(nx1.ne.nx2)nhx=2
 565                  if(nv1.ne.nv2)nhv=2
 566 brash 1.7  
 567 brash 1.12       return
 568                  end
 569 brash 1.8  
 570 brash 1.12 c      subroutine get_drift_distance_ejb(xa,ya,za,xb,yb,zb,
 571            c     &           nu,nx,nv,du,dx,dv)
 572            c
 573            c      implicit none
 574            c
 575            c      real*8 xa,ya,za,xb,yb,zb,du,dx,dv
 576            c      integer*4 nu,nx,nv
 577            c      real*8 tphi,ttheta
 578            c      real*8 uw,xw,vw
 579            c      real*8 c11,c12,c21,c22,d1,d2,a,zt,xt,yt
 580            c      real*8 xu,yu,zu
 581            c      real*8 xv,yv,zv
 582            c      real*8 xx,yx,zx
 583            c
 584            c      tphi=(xb-xa)/(zb-za)
 585            c      ttheta=(yb-ya)/(zb-za)
 586            c
 587            c      uw=-2.0*nu-3.592+104.0
 588            c      xw=-2.0*nx-5.080+84.0
 589            c      vw=2.0*nv+3.592-104.0
 590            c      zu=(zb+za)/2.0-1.60
 591 brash 1.12 c      zv=(zb+za)/2.0+1.60
 592            c      zx=(zb+za)/2.0
 593            c
 594            cc      write(*,*)'W: ',uw,xw,vw
 595            cc      write(*,*)'********************'
 596            c
 597            c      c11=tphi-ttheta
 598            c      c12=sqrt(2.0)
 599            c      d1=-xa+ya
 600            c      c21=tphi*tphi+ttheta*ttheta+1.0
 601            c      c22=-ttheta/sqrt(2.0)+tphi/sqrt(2.0)
 602            c      d2=uw*(ttheta+tphi)/sqrt(2.0)-xa*tphi-ya*ttheta+zu-za
 603            c
 604            c      a=(d1*c21-d2*c11)/(c21*c12-c22*c11)
 605            c      zt=(d1-c12*a)/c11
 606            cc      write(*,*)'U Plane zt,a: ',zt,a
 607            c
 608            c      xt=xa+zt*tphi
 609            c      yt=ya+zt*ttheta
 610            c      xu=(uw-a)/sqrt(2.0)
 611            c      yu=(uw+a)/sqrt(2.0)
 612 brash 1.12 c
 613            c      zt=zt+za
 614            c
 615            c      du=sqrt((xt-xu)**2+(yt-yu)**2+(zt-zu)**2)      
 616            c       
 617            c      c11=tphi+ttheta
 618            c      c12=-sqrt(2.0)
 619            c      d1=-xa-ya
 620            c      c21=tphi*tphi+ttheta*ttheta+1.0
 621            c      c22=-ttheta/sqrt(2.0)-tphi/sqrt(2.0)
 622            c      d2=vw*(ttheta+tphi)/sqrt(2.0)-xa*tphi-ya*ttheta+zv-za
 623            c
 624            c      a=(d1*c21-d2*c11)/(c21*c12-c22*c11)
 625            c      zt=(d1-c12*a)/c11
 626            cc      write(*,*)'V Plane zt,a: ',zt,a
 627            c
 628            c      xt=xa+zt*tphi
 629            c      yt=ya+zt*ttheta
 630            c      xv=-(vw-a)/sqrt(2.0)
 631            c      yv=(vw+a)/sqrt(2.0)
 632            c
 633 brash 1.12 c      zt=zt+za
 634            c      
 635            c      dv=sqrt((xt-xv)**2+(yt-yv)**2+(zt-zv)**2)
 636            c     
 637            c      c11=tphi
 638            c      c12=-1.0
 639            c      d1=-ya
 640            c      c21=tphi*tphi+ttheta*ttheta+1.0
 641            c      c22=-ttheta
 642            c      d2=xw*tphi-xa*tphi-ya*ttheta+zx-za
 643            c
 644            c      a=(d1*c21-d2*c11)/(c21*c12-c22*c11)
 645            c      zt=(d1-c12*a)/c11
 646            cc      write(*,*)'X Plane zt,a: ',zt,a
 647            c
 648            c      xt=xa+zt*tphi
 649            c      yt=ya+zt*ttheta
 650            c      xx=xw
 651            c      yx=a
 652            c
 653            c      zt=zt+za
 654 brash 1.12 c      
 655            c      dx=sqrt((xt-xx)**2+(yt-yx)**2+(zt-zx)**2)
 656            c
 657            cc      if((du.gt.1.00)) then
 658 brash 1.11 c         write(*,*)'Calculating Drift Distance ...'
 659            c         write(*,*)'A: ',xa,ya,za
 660            c         write(*,*)'B: ',xb,yb,zb
 661 brash 1.12 cc         write(*,*)'U: ',xu,yu,zu
 662            cc         write(*,*)'V: ',xv,yv,zv
 663            cc         write(*,*)'X: ',xx,yx,zx
 664 brash 1.11 c         write(*,*)'U Drift distance = ',du
 665            c         write(*,*)'V Drift distance = ',dv
 666            c         write(*,*)'X Drift distance = ',dx
 667 brash 1.12 cc      endif
 668            c
 669            c      return
 670            c      end
 671 brash 1.11 
 672            
 673                  subroutine get_drift_distance(xa,ya,za,xb,yb,zb,
 674                 &           nu,nx,nv,distu,distx,distv)
 675            c
 676            c     This subroutine uses the entrance (a) and exit (b)
 677            c     points of a chamber to define the line of the track.
 678            c     It uses the wire number and wire direction to define
 679            c     the wire line.  It then uses these to build parallel
 680            c     planes by computing a normal vector to both of the lines.
 681            c     Finally, it calculates the distance between these two
 682            c     planes which is the distance of shortest approach.
 683            c      
 684                  implicit none
 685            c
 686                  real*8 xa,ya,za,xb,yb,zb
 687                  real*8 distu,distx,distv,xp,yp,zc
 688                  integer*4 nu,nx,nv
 689                  real*8 uw,xw,vw
 690                  real*8 zt,xt,yt
 691                  real*8 xu,yu,zu
 692 brash 1.11       real*8 xv,yv,zv
 693                  real*8 xx,yx,zx
 694            c
 695            c     the direction of each of the lines
 696            c     vect1=track   vectu=u wire
 697 brash 1.14       real*8 vect1(1:3), vectu(1:3)
 698                  real*8 vectx(1:3), vectv(1:3)
 699 brash 1.11 c   
 700            c     the normal vector to both lines
 701 brash 1.14       real*8 normu(1:3)
 702                  real*8 normx(1:3)
 703                  real*8 normv(1:3)
 704 brash 1.11 c
 705            c     the coefficients of the plane
 706 brash 1.14       real*8 pvectu(1:4)
 707                  real*8 pvectx(1:4)
 708                  real*8 pvectv(1:4)
 709 brash 1.11 c
 710                  vect1(1)=xb-xa
 711                  vect1(2)=yb-ya
 712                  vect1(3)=zb-za
 713            c
 714                  zu=(zb+za)/2.0-1.60
 715                  zv=(zb+za)/2.0+1.60
 716                  zx=(zb+za)/2.0
 717            c
 718            c     use line number to calculate distance relative to
 719            c     wire plane, then convert to x and y
 720            c      write(*,*)'nu nx nv',nu,nx,nv
 721                  uw=-2.0*nu-3.592+104.0
 722                  xw=-2.0*nx-5.080+84.0
 723                  vw=2.0*nv+3.592-104.0
 724                  xu=uw/sqrt(2.0)
 725                  yu=uw/sqrt(2.0)      
 726                  xx=xw
 727                  yx=0
 728                  xv=-vw/sqrt(2.0)
 729                  yv=vw/sqrt(2.0)
 730 brash 1.12 c      write(*,*)'uw xu yu zu',uw,xu,yu,zu
 731 brash 1.11 c      write(*,*)'xw xx yx zx',xw,xx,yx,zx
 732            c      write(*,*)'vw xv yv zv',vw,xv,yv,zv
 733            c
 734            c     define direction vector for wires, will be the same
 735            c     for each wire in a given plane, and is known
 736            c     for each plane
 737                  vectu(1)=1.0/sqrt(2.0)
 738                  vectu(2)=1.0/sqrt(2.0)
 739                  vectu(3)=0.0
 740                  vectx(1)=0.0
 741                  vectx(2)=1.0
 742                  vectx(3)=0.0
 743                  vectv(1)=-1.0/sqrt(2.0)
 744                  vectv(2)=1.0/sqrt(2.0)
 745                  vectv(3)=0.0
 746            c
 747 brash 1.12 c      write(*,*)'distance calculations .....'
 748            c      write(*,*)xa,ya,za
 749            c      write(*,*)vect1(1),vect1(2),vect1(3)
 750            c      write(*,*)xu,yu,zu
 751            c      write(*,*)vectu(1),vectu(2),vectu(3)
 752            c      write(*,*)xx,yx,zx
 753            c      write(*,*)vectx(1),vectx(2),vectx(3)
 754            c      write(*,*)xv,yv,zv
 755            c      write(*,*)vectv(1),vectv(2),vectv(3)
 756            c      write(*,*)'distance calculations .....'
 757            c
 758 brash 1.11 c     cross product
 759                  normu(1)=vect1(2)*vectu(3)-vect1(3)*vectu(2)
 760                  normu(2)=vect1(1)*vectu(3)-vect1(3)*vectu(1)
 761                  normu(3)=vect1(1)*vectu(2)-vect1(2)*vectu(1)
 762                  normx(1)=vect1(2)*vectx(3)-vect1(3)*vectx(2)
 763                  normx(2)=vect1(1)*vectx(3)-vect1(3)*vectx(1)
 764                  normx(3)=vect1(1)*vectx(2)-vect1(2)*vectx(1)
 765                  normv(1)=vect1(2)*vectv(3)-vect1(3)*vectv(2)
 766                  normv(2)=vect1(1)*vectv(3)-vect1(3)*vectv(1)
 767                  normv(3)=vect1(1)*vectv(2)-vect1(2)*vectv(1)
 768            c      
 769                  pvectu(1)=normu(1)
 770                  pvectu(2)=normu(2)
 771                  pvectu(3)=normu(3)
 772                  pvectu(4)=normu(1)*(-xu)+normu(2)*(-yu)+normu(3)*(-zu)
 773                  pvectx(1)=normx(1)
 774                  pvectx(2)=normx(2)
 775                  pvectx(3)=normx(3)
 776                  pvectx(4)=normx(1)*(-xx)+normx(2)*(-yx)+normx(3)*(-zx)
 777                  pvectv(1)=normv(1)
 778                  pvectv(2)=normv(2)
 779 brash 1.11       pvectv(3)=normv(3)
 780                  pvectv(4)=normv(1)*(-xv)+normv(2)*(-yv)+normv(3)*(-zv)
 781            c
 782            c     distance formula
 783                  distu=(pvectu(1)*xa+pvectu(2)*ya+pvectu(3)*za+pvectu(4))
 784                 &     /sqrt(normu(1)**2+normu(2)**2+normu(3)**2)
 785                  distx=(pvectx(1)*xa+pvectx(2)*ya+pvectx(3)*za+pvectx(4))
 786                 &     /sqrt(normx(1)**2+normx(2)**2+normx(3)**2)
 787                  distv=(pvectv(1)*xa+pvectv(2)*ya+pvectv(3)*za+pvectv(4))
 788                 &     /sqrt(normv(1)**2+normv(2)**2+normv(3)**2)
 789            c      write(*,*)'Drift distance: ',distu, distx, distv
 790 brash 1.14 c     
 791            c        write(*,*)'Brads routine ....' 
 792            c        write(*,*)xa,ya,za
 793            c        write(*,*)xb,yb,zb
 794            c        write(*,*)nu,nx,nv
 795            c   	write(*,*)uw,xw,vw
 796            c        write(*,*)'Drift distance: ',distu, distx, distv
 797                  
 798 brash 1.11       return
 799                  end
 800            
 801 brash 1.12       subroutine get_drift_distance_ejb(xa,ya,za,xb,yb,zb,
 802 brash 1.14      &           nu,nx,nv,distu,distx,distv,idflag)
 803 brash 1.12 c
 804            c Author: Ed Brash - December 15th, 2005
 805            c Yet another attempt at a full drift distance calculation
 806            c
 807                  implicit none
 808            c
 809                  real*8 xa,ya,za,xb,yb,zb
 810                  real*8 distu,distx,distv,xp,yp,zc
 811                  integer*4 nu,nx,nv
 812                  real*8 uw,xw,vw
 813                  real*8 zt,xt,yt
 814                  real*8 xu,yu,zu
 815                  real*8 xv,yv,zv
 816                  real*8 xx,yx,zx
 817 brash 1.14       logical idflag
 818 brash 1.12 c
 819            c     the direction of each of the lines
 820            c     vect1=track   vectu=u wire
 821                  real*8 vect1(1:3), vectu(1:3)
 822                  real*8 vectx(1:3), vectv(1:3)
 823            
 824            c     the difference vector between the defining points
 825                  real*8 du(1:3),dx(1:3),dv(1:3)
 826            c   
 827            c     the normal vector to both lines
 828                  real*8 normu(1:3)
 829                  real*8 normx(1:3)
 830                  real*8 normv(1:3)
 831                  real*8 normumag,normxmag,normvmag
 832            c
 833            c     the coefficients of the distance vector
 834                  real*8 dvectu(1:4)
 835                  real*8 dvectx(1:4)
 836                  real*8 dvectv(1:4)
 837            c
 838 brash 1.14       idflag=.false.
 839 brash 1.12       vect1(1)=xb-xa
 840                  vect1(2)=yb-ya
 841                  vect1(3)=zb-za
 842            c
 843                  zu=(zb+za)/2.0-1.60
 844                  zv=(zb+za)/2.0+1.60
 845                  zx=(zb+za)/2.0
 846            c
 847            c     use line number to calculate distance relative to
 848            c     wire plane, then convert to x and y
 849            c      write(*,*)'nu nx nv',nu,nx,nv
 850                  uw=-2.0*nu-3.592+104.0
 851                  xw=-2.0*nx-5.080+84.0
 852                  vw=2.0*nv+3.592-104.0
 853                  xu=uw/sqrt(2.0)
 854                  yu=uw/sqrt(2.0)      
 855                  xx=xw
 856                  yx=0
 857                  xv=-vw/sqrt(2.0)
 858                  yv=vw/sqrt(2.0)
 859            c      write(*,*)'uw xu yu zu',uw,xu,yu,zu
 860 brash 1.12 c      write(*,*)'xw xx yx zx',xw,xx,yx,zx
 861            c      write(*,*)'vw xv yv zv',vw,xv,yv,zv
 862            c
 863            c     define direction vector for wires, will be the same
 864            c     for each wire in a given plane, and is known
 865            c     for each plane
 866                  vectu(1)=1.0/sqrt(2.0)
 867                  vectu(2)=-1.0/sqrt(2.0)
 868                  vectu(3)=0.0
 869                  vectx(1)=0.0
 870                  vectx(2)=1.0
 871                  vectx(3)=0.0
 872                  vectv(1)=1.0/sqrt(2.0)
 873                  vectv(2)=1.0/sqrt(2.0)
 874                  vectv(3)=0.0
 875            c
 876            c      write(*,*)'distance calculations .....'
 877            c      write(*,*)xa,ya,za
 878            c      write(*,*)vect1(1),vect1(2),vect1(3)
 879            c      write(*,*)xu,yu,zu
 880            c      write(*,*)vectu(1),vectu(2),vectu(3)
 881 brash 1.12 c      write(*,*)xx,yx,zx
 882            c      write(*,*)vectx(1),vectx(2),vectx(3)
 883            c      write(*,*)xv,yv,zv
 884            c      write(*,*)vectv(1),vectv(2),vectv(3)
 885            c      write(*,*)'distance calculations .....'
 886            c
 887            c     cross product
 888                  normu(1)=vect1(2)*vectu(3)-vect1(3)*vectu(2)
 889                  normu(2)=vect1(3)*vectu(1)-vect1(1)*vectu(3)
 890                  normu(3)=vect1(1)*vectu(2)-vect1(2)*vectu(1)
 891                  normx(1)=vect1(2)*vectx(3)-vect1(3)*vectx(2)
 892                  normx(2)=vect1(3)*vectx(1)-vect1(1)*vectx(3)
 893                  normx(3)=vect1(1)*vectx(2)-vect1(2)*vectx(1)
 894                  normv(1)=vect1(2)*vectv(3)-vect1(3)*vectv(2)
 895                  normv(2)=vect1(3)*vectv(1)-vect1(1)*vectv(3)
 896                  normv(3)=vect1(1)*vectv(2)-vect1(2)*vectv(1)
 897            c      write(*,*)normu(1),normu(2),normu(3)
 898            c
 899                  normumag=sqrt(normu(1)**2+normu(2)**2+normu(3)**2)
 900                  normxmag=sqrt(normx(1)**2+normx(2)**2+normx(3)**2)
 901                  normvmag=sqrt(normv(1)**2+normv(2)**2+normv(3)**2)
 902 brash 1.12       normu(1)=normu(1)/normumag
 903                  normu(2)=normu(2)/normumag
 904                  normu(3)=normu(3)/normumag
 905 brash 1.14       normx(1)=normx(1)/normxmag
 906                  normx(2)=normx(2)/normxmag
 907                  normx(3)=normx(3)/normxmag
 908                  normv(1)=normv(1)/normvmag
 909                  normv(2)=normv(2)/normvmag
 910                  normv(3)=normv(3)/normvmag
 911 brash 1.12 c      write(*,*)normumag
 912            c
 913                  du(1)=xa-xu
 914                  du(2)=ya-yu
 915                  du(3)=za-zu      
 916                  dx(1)=xa-xx
 917                  dx(2)=ya-yx
 918                  dx(3)=za-zx      
 919                  dv(1)=xa-xv
 920                  dv(2)=ya-yv
 921                  dv(3)=za-zv
 922            c
 923            c
 924            c     distance formula
 925                  distu=du(1)*normu(1)+du(2)*normu(2)+du(3)*normu(3)     
 926                  distx=dx(1)*normx(1)+dx(2)*normx(2)+dx(3)*normx(3)     
 927                  distv=dv(1)*normv(1)+dv(2)*normv(2)+dv(3)*normv(3)     
 928            c
 929 brash 1.14       if(distu.gt.1.0.or.distx.gt.1.0.or.distv.gt.1.0)
 930                 &            idflag=.true. 
 931                  if(distu.gt.1.28.or.distx.gt.1.28.or.distv.gt.1.28)then
 932                    write(*,*)'Problem Child !!!'
 933                    write(*,*)'distance calculations .....'
 934                    write(*,*)xa,ya,za
 935            c        write(*,*)vect1(1),vect1(2),vect1(3)
 936                    write(*,*)xu,yu,zu
 937            c        write(*,*)vectu(1),vectu(2),vectu(3)
 938                    write(*,*)xx,yx,zx
 939            c        write(*,*)vectx(1),vectx(2),vectx(3)
 940                    write(*,*)xv,yv,zv
 941            c        write(*,*)vectv(1),vectv(2),vectv(3)
 942                    write(*,*)'normalization factors'
 943                    write(*,*)normu(1),normu(2),normu(3)
 944                    write(*,*)normumag
 945                    write(*,*)normx(1),normx(2),normx(3)
 946                    write(*,*)normxmag
 947                    write(*,*)normv(1),normv(2),normv(3)
 948                    write(*,*)normvmag
 949                    write(*,*)'Drift distance: ',distu, distx, distv
 950 brash 1.14       endif
 951 brash 1.12 c      
 952                  return
 953                  end
 954            
 955 brash 1.11 
 956                  subroutine calc_theta_phi(xin1,yin1,zin1,xin2,yin2,zin2,
 957                 &     xsc1,ysc1,zsc1,xsc2,ysc2,zsc2,theta,phi)
 958            c
 959                  implicit none
 960 brash 1.12       include 'fpp_local.h'
 961                  include 'geant_local.h'
 962 brash 1.11 c
 963                  real*8 xin1,yin1,zin1,xin2,yin2,zin2
 964                  real*8 xsc1,ysc1,zsc1,xsc2,ysc2,zsc2,theta,phi
 965                  real*8 ftheta, fphi, fpsi
 966 brash 1.12       real*8 lin,lout,theta_ejb,phi_ejb
 967 brash 1.11 c
 968                  real invect(1:3)
 969                  real scvect(1:3)
 970                  real scvect2(1:3)
 971 brash 1.12       real in(1:3)
 972                  real out(1:3)
 973                  real scat(1:3)
 974 brash 1.11 c
 975                  invect(1)=xin2-xin1
 976                  invect(2)=yin2-yin1
 977                  invect(3)=zin2-zin1
 978                  scvect(1)=xsc2-xsc1
 979                  scvect(2)=ysc2-ysc1
 980                  scvect(3)=zsc2-zsc1
 981 brash 1.12 c      write(*,*)'INCOMING: ',invect(1),invect(2),invect(3)
 982            c      write(*,*)'SCATTERED: ',scvect(1),scvect(2),scvect(3)
 983            c
 984            c EJB calculation of theta and phi
 985            c
 986                  in(1)=invect(1)/invect(3)
 987                  in(2)=invect(2)/invect(3)
 988                  in(3)=invect(3)/invect(3)
 989                  out(1)=scvect(1)/scvect(3)
 990                  out(2)=scvect(2)/scvect(3)
 991                  out(3)=scvect(3)/scvect(3)
 992                  lin=sqrt(in(1)**2+in(2)**2+in(3)**2)
 993                  lout=sqrt(out(1)**2+out(2)**2+out(3)**2)
 994                  scat(1)=out(1)-in(1)
 995                  scat(2)=out(2)-in(2)
 996                  scat(3)=out(3)
 997                  x_ejb=scat(1)
 998                  y_ejb=scat(2)
 999                  z_ejb=scat(3)
1000                  if(scat(1).ge.0.0.and.scat(2).gt.0.0)then
1001                     phi_ejb=atan(scat(1)/scat(2))*57.2957795
1002 brash 1.12       else if(scat(1).ge.0.0.and.scat(2).lt.0.0)then
1003                     phi_ejb=atan(scat(1)/scat(2))*57.2957795+180.00
1004                  else if(scat(1).le.0.0.and.scat(2).lt.0.0)then
1005                     phi_ejb=atan(scat(1)/scat(2))*57.2957795+180.00
1006                  else if(scat(1).le.0.0.and.scat(2).gt.0.0)then
1007                     phi_ejb=atan(scat(1)/scat(2))*57.2957795+360.00
1008                  endif
1009            c
1010                  theta_ejb=acos((in(1)*out(1)+in(2)*out(2)+in(3)*out(3))/
1011                 &     (lin*lout))*57.2957795
1012            c      write(*,*)'EJB Incoming Vector = ',in(1),in(2),in(3)
1013            c      write(*,*)'EJB Outgoing Vector = ',out(1),out(2),out(3)
1014            c      write(*,*)'EJB Scattered Vector = ',scat(1),scat(2),scat(3)
1015            c      write(*,*)'EJB Thetas = ',theta_ejb,phi_ejb
1016 brash 1.11 c
1017 brash 1.12 c end EJB calculation
1018            c      
1019            
1020            
1021 brash 1.11       ftheta=acos(invect(3)/sqrt(invect(1)**2+invect(3)**2))
1022                  fphi=acos(invect(3)/sqrt(invect(2)**2+invect(3)**2))
1023                  fpsi=acos(sqrt(invect(2)**2+invect(3)**2)/sqrt(invect(1)**2
1024                 &     +invect(2)**2+invect(3)**2))
1025            c
1026 brash 1.12 c      write(*,*)'ftheta, fphi, fpsi',
1027            c     &    ftheta*57.296,fphi*57.296,fpsi*57.296
1028 brash 1.11       scvect2(1)=scvect(1)*cos(fpsi)-sin(fpsi)*(scvect(2)*sin(fphi)
1029                 &     +scvect(3)*cos(fphi))
1030                  scvect2(2)=scvect(2)*cos(fphi)-scvect(3)*sin(fphi)
1031                  scvect2(3)=scvect(1)*sin(fpsi)+cos(fpsi)*(scvect(2)*sin(fphi)
1032                 &     +scvect(3)*cos(fphi))
1033            c
1034 brash 1.12 c      write(*,*)'SCATTERED 2: ',scvect2(1),scvect2(2),scvect2(3)
1035 brash 1.11       theta=atan(sqrt(scvect2(1)**2+scvect2(2)**2)/scvect2(3))*57.2957795
1036                  phi=atan(scvect2(1)/scvect2(2))*57.2957795
1037                  if (scvect2(1).lt.0.0.and.scvect2(2).gt.0.0) 
1038                 &  phi=phi+360.00
1039                  if (scvect2(1).lt.0.0.and.scvect2(2).lt.0.0) 
1040                 &  phi=phi+180.00
1041                  if (scvect2(1).gt.0.0.and.scvect2(2).lt.0.0) 
1042                 &  phi=phi+180.00
1043 brash 1.12 
1044            c      write(*,*)'Theta,phi =',theta,phi
1045 brash 1.15       theta=theta_ejb
1046                  phi=phi_ejb
1047 brash 1.11 c
1048                  return
1049                  end
1050            
1051 brash 1.7  
1052                  
1053            
1054                  
1055            
1056                  
1057                  
1058                  
1059 jones 1.1        

Analyzer/Replay: Mark Jones, Documents: Stephen Wood
Powered by
ViewCVS 0.9.2-cvsgraph-1.4.0