(file) Return to gustep.f CVS log (file) (dir) Up to [HallC] / geant_gep / src

   1 jones 1.1       subroutine gustep
   2           c
   3           c     this subroutine was written by jpsullivan april 21-22, 1993
   4           c     the tracking realated part is relatively simple -- if the
   5           c     particle leave the volume called 'targ', throw it away.
   6           c     it also makes a bunch of histograms
   7           c     
   8           c     *keep,gctrak.
   9           *--   author :
  10 brash 1.13 
  11                  implicit none
  12            
  13                  integer*4 mylast
  14                  integer*4 nhu,nhv,nhx
  15            
  16 jones 1.1        common/gctrak/vect(7),getot,gekin,vout(7),nmec,lmec(30),namec(30)
  17                 +     ,nstep ,maxnst,destep,destel,safety,sleng 
  18                 +     ,step  ,snext ,sfield
  19                 +     ,tofg  ,gekrat,upwght,ignext,inwvol,istop ,idecad,iekbin
  20                 +     , ilosl, imull,ingoto,nldown,nlevin,nlvsav,istory
  21            c     
  22                  integer nmec,lmec,namec,nstep ,maxnst,ignext,inwvol,istop
  23                 +     ,idecad,iekbin,ilosl, imull,ingoto,nldown,nlevin
  24                 +     ,nlvsav,istory
  25                  real  vect,getot,gekin,vout,destep,destel,safety,sleng ,step
  26                 +     ,snext,sfield,tofg  ,gekrat,upwght
  27            c     end gctrak
  28            *     keep,gcvolu.
  29            *--   author :
  30                  common/gcvolu/nlevel,names(15),number(15),
  31                 +     lvolum(15),lindex(15),infrom,nlevmx,nldev(15),linmx(15),
  32                 +     gtran(3,15),grmat(10,15),gonly(15),glx(3)
  33            c     
  34                  integer nlevel,number,lvolum,lindex,infrom,nlevmx,
  35                 +     nldev,linmx
  36                  character*4 names
  37 jones 1.1        real gtran,grmat,gonly,glx
  38            c     end gcvolu
  39            c     
  40            *     keep,gcbank.
  41            *--   author :
  42                  integer iq,lq,nzebra,ixstor,ixdiv,ixcons,lmain,lr1
  43                  integer kwbank,kwwork,iws
  44                  real gversn,zversn,fendq,ws,q
  45            c     
  46                  parameter (kwbank=69000,kwwork=5200)
  47                  common/gcbank/nzebra,gversn,zversn,ixstor,ixdiv,ixcons,fendq(16)
  48                 +     ,lmain,lr1,ws(kwbank)
  49                  dimension iq(2),q(2),lq(8000),iws(2)
  50                  equivalence (q(1),iq(1),lq(9)),(lq(1),lmain),(iws(1),ws(1))
  51                  common/gclink/jdigi ,jdraw ,jhead ,jhits ,jkine ,jmate ,jpart
  52                 +     ,jrotm ,jrung ,jset  ,jstak ,jgstat,jtmed ,jtrack,jvertx
  53                 +     ,jvolum,jxyz  ,jgpar ,jgpar2,jsklt
  54            c     
  55                  integer       jdigi ,jdraw ,jhead ,jhits ,jkine ,jmate ,jpart
  56                 +     ,jrotm ,jrung ,jset  ,jstak ,jgstat,jtmed ,jtrack,jvertx
  57                 +     ,jvolum,jxyz  ,jgpar,jgpar2 ,jsklt
  58 jones 1.1  c     
  59            *     keep,gcking.
  60            *--   author :
  61                  common/gcking/kcase,ngkine,gkin(5,100),tofd(100),iflgk(100)
  62                  integer       kcase,ngkine ,iflgk
  63                  real          gkin,tofd
  64 brash 1.16       character*4 chcase
  65 jones 1.1  c     end gcking
  66            c     
  67            *     keep,gckine.
  68            *--   author :
  69            *--   author :
  70                  integer       ikine,itra,istak,ivert,ipart,itrtyp,napart,ipaold
  71                  real          pkine,amass,charge,tlife,vert,pvert
  72                  common/gckine/ikine,pkine(10),itra,istak,ivert,ipart,itrtyp
  73                 +     ,napart(5),amass,charge,tlife,vert(3),pvert(4),ipaold
  74            c     end gckine
  75            c     
  76                  integer ihset,ihdet,iset,idet,idtype,nvname,numbv
  77                  common/gcsets/ihset,ihdet,iset,idet,idtype,nvname,numbv(20)
  78                  real x1,y1,z1,lpar,v1,v2,v3,newdist,x1new,y1new,z1new
  79                  real xstr,ystr,zstr,xstrnew,ystrnew,zstrnew
  80                  real rotmat2,rotmat3,rotmat4,rotmat1
  81 brash 1.6  c
  82 jones 1.1        common/geomstep/rotmat1(3,3),rotmat2(3,3),rotmat3(3,3),
  83                 &     rotmat4(3,3)
  84            c     
  85                  include 'fpp_local.h'
  86                  include 'geant_local.h'
  87            c      include 'parameter.h'
  88            c      include 'espace_type.h'
  89            c      include 'detector.h'
  90            c      include 'transport.h'
  91            c      include 'option.h'
  92            c     
  93            c     
  94                  integer i,make_hist,ioff,ihit,ieffcheck
  95                  real pt_pi,ppar_pi,arg1,arg2,rapid_pi,pchmb,hits(6)
  96                  real a,b,c,beta,z,y,straw,ypath,rndm(3),ycompare
  97 brash 1.14       logical idflag
  98                  real*8 d1uetemp,d1xetemp,d1vetemp
  99 brash 1.17       real*8 theta_temp,phi_temp
 100 brash 1.2  c      write(6,*)'entering gustep'
 101            c      write(6,*)'inwvol =',inwvol
 102            c      write(6,*)'position =',vect(1),vect(2),vect(3)
 103            c      write(6,*)'names =',names(nlevel)
 104 jones 1.1  c     
 105            c
 106            c
 107                  if ( ngkine.gt.0. ) then
 108                     do i=1,nmec
 109                        if ( lmec(i).eq.12 ) then
 110            c               write ( 6,* ) ' gustep: hadronic interaction'
 111            c               write ( 6,* ) ' nevent=',nevent
 112                        end if
 113                     end do
 114                     mylast = min(100,ngkine)
 115                     do i=1,mylast
 116 brash 1.16 c         write(*,*)'Secondaries Loop ...',i,' particle = ',gkin(5,i)
 117            c         if(gkin(5,i).eq.14)then
 118            c		write(*,*)'Total E =',gkin(4,i)
 119            c		write(*,*)'KE = ',gkin(4,i)-.93827
 120            c	 elseif(gkin(5,i).eq.8.or.gkin(5,i).eq.9)then
 121            c		write(*,*)'Total E =',gkin(4,i)
 122            c		write(*,*)'KE = ',gkin(4,i)-.1395
 123            c	 endif	
 124                     if(gkin(5,i).eq.14.or.gkin(5,i).eq.8.or.
 125                 &          gkin(5,i).eq.9)then
 126            	 	iflgk(i)=1
 127            	 else
 128            	 	iflgk(i)=-1
 129            	 endif
 130            c            iflgk(i) = 1
 131            c            if ( gkin(5,i).eq.4 ) iflgk(i) = 0
 132            c            if ( gkin(4,i).gt.0.001 ) iflgk(i)=0
 133 jones 1.1           end do
 134            c         n_2nd = n_2nd + ngkine
 135                  endif
 136            c     
 137            c  the following call makes sure all of the secondary particles
 138            c  get tracked too (provided the flag iflgk(i) for that particle
 139            c  was set in the loop above -- this point is not correctly or
 140            c  clearly documented in the version of the geant manual i have).
 141            c
 142 brash 1.16       if(sectrack)then
 143            c       write(*,*)'SECONDARY TRACKING ...'
 144            c       write(*,*)'Number of secondaries = ',ngkine
 145            c       call uhtoc(kcase,4,chcase,4)
 146            c       write(*,*)'Source of interaction = ',chcase
 147            c       do i=1,ngkine
 148            c	write(*,*)'Secondary ',i,' ID =',gkin(5,i)
 149            c        if(gkin(5,i).eq.14.or.gkin(5,i).eq.8.or.
 150            c     &         gkin(5,i).eq.9)then
 151            c		iflgk(i)=1
 152            c	else
 153            c		iflgk(i)=-1
 154            c	endif
 155            c       enddo
 156            
 157                   call gsking ( 0 )
 158                  endif
 159 jones 1.1  c     
 160 brash 1.6  c      write(*,*)'In GUSTEP: ... names(nlevel) = ',names(nlevel)
 161 brash 1.11 c      write(*,*)'In GUSTEP: ... inwvol = ',inwvol
 162 brash 1.6  
 163 jones 1.1        make_hist = 0
 164                  if ( inwvol.eq.1 .and. names(nlevel).eq."hall" ) then
 165                     make_hist=1
 166            c     
 167            c     if we get here, the tracking is done for this track
 168            c     (istop=1) but make a bunch of histograms before exitting
 169            c     note that ipart=8 means a pi+ and 9 is a pi-
 170            c     
 171            c     istop = 1
 172                  else if ( istop.ne.0.and. names(nlevel).eq."aira" ) then
 173                     make_hist=0
 174                  else if ( istop.ne.0.and. names(nlevel).eq."airb" ) then
 175                     make_hist=0
 176                  else if ( istop.ne.0.and. names(nlevel).eq."airc" ) then
 177                     make_hist=0
 178                  else if ( istop.ne.0.and. names(nlevel).eq."aird" ) then
 179                     make_hist=0
 180 brash 1.2        else if ( istop.ne.0.and. names(nlevel).eq."aire" ) then
 181                     make_hist=0
 182                  else if ( istop.ne.0.and. names(nlevel).eq."airf" ) then
 183                     make_hist=0
 184 brash 1.6        else if ( names(nlevel).eq."airg" ) then
 185            c         write(*,*)'In airg ... inwvol = ',inwvol
 186            c         write(*,*)'Z-value = ',vect(3)
 187                     if (istop.ne.0) then
 188                        make_hist=0
 189                     endif
 190                  else if ( names(nlevel).eq."HALL" ) then
 191            c         write(*,*)'In HALL ... inwvol = ',inwvol
 192            c         write(*,*)'Z-value = ',vect(3)
 193                     if (istop.ne.0) then
 194                        make_hist=0
 195                     endif
 196 brash 1.2        else if ( istop.ne.0.and. names(nlevel).eq."airh" ) then
 197                     make_hist=0
 198                  else if ( istop.ne.0.and. names(nlevel).eq."hch1" ) then
 199                     make_hist=0
 200 brash 1.11       else if ( names(nlevel).eq."hch2" ) then
 201            c	 write(*,*)'In hch2'
 202                     if(inwvol.eq.1) then
 203            c           write(6,*)'Coordinates at hch2'
 204            c           write(6,*)'x=',vect(1),' y=',vect(2),' z=',vect(3)
 205                       xahch2=vect(1)
 206                       yahch2=vect(2)
 207                       zahch2=vect(3)
 208                     endif
 209                     if(inwvol.eq.2) then
 210                        xbhch2=vect(1)
 211                        ybhch2=vect(2)
 212                        zbhch2=vect(3)
 213                     endif
 214            
 215                     if ( istop.ne.0 ) then
 216                        make_hist=0
 217                     endif
 218 brash 1.4        else if ( names(nlevel).eq."fch1" ) then
 219 brash 1.6  c         write(*,*)'In fch1 ... inwvol = ',inwvol
 220 brash 1.4           if(inwvol.eq.1) then
 221 brash 1.5  c           write(6,*)'Coordinates at fch1'
 222            c           write(6,*)'x=',vect(1),' y=',vect(2),' z=',vect(3)
 223 brash 1.6             x1a=vect(1)
 224                       y1a=vect(2)
 225                       z1a=vect(3)
 226 brash 1.4           endif
 227 brash 1.16          if(inwvol.eq.2.and.(ipart.eq.8.or.ipart.eq.9.
 228                 &         or.ipart.eq.14)) then
 229 brash 1.6              x1b=vect(1)
 230                        y1b=vect(2)
 231                        z1b=vect(3)
 232            
 233 brash 1.13             call get_wire_numbers(x1a,y1a,z1a,x1b,y1b,z1b,nhu,nhx,nhv,
 234 brash 1.12      &           n1ua,n1xa,n1va,n1ub,n1xb,n1vb)
 235 brash 1.6  
 236 brash 1.16             nhu1=nhu1+1
 237                        nhx1=nhx1+1
 238                        nhv1=nhv1+1
 239 brash 1.13 
 240                        if(nhu.eq.1.and.nhv.eq.1.and.nhx.eq.1) then
 241 brash 1.14                idflag=.false.
 242 brash 1.12                call get_drift_distance_ejb(x1a,y1a,z1a,x1b,y1b,z1b,
 243 brash 1.14      &              n1ua,n1xa,n1va,d1ue,d1xe,d1ve,idflag)
 244 brash 1.16 c               call get_drift_distance(x1a,y1a,z1a,x1b,y1b,z1b,
 245            c     &              n1ua,n1xa,n1va,d1u,d1x,d1v)
 246 brash 1.12             else
 247                           call get_drift_distance_ejb(x1a,y1a,z1a,x1b,y1b,z1b,
 248 brash 1.14      &              n1ua,n1xa,n1va,d1ue,d1xe,d1ve,idflag)
 249                           d1uetemp=d1ue
 250                           d1xetemp=d1xe
 251                           d1vetemp=d1ve
 252 brash 1.12                call get_drift_distance_ejb(x1a,y1a,z1a,x1b,y1b,z1b,
 253 brash 1.14      &              n1ub,n1xb,n1vb,d1ue,d1xe,d1ve,idflag)
 254                           if(idflag)
 255                 &             write(*,*)'Drift Distance 1a: ',
 256                 &                 d1uetemp,d1xetemp,d1vetemp
 257                           if(idflag)
 258                 &             write(*,*)'Drift Distance 1b: ',d1ue,d1xe,d1ve
 259 brash 1.16 c               call get_drift_distance(x1a,y1a,z1a,x1b,y1b,z1b,
 260            c     &              n1ua,n1xa,n1va,d1u,d1x,d1v)
 261            c               if(idflag)
 262            c     &             write(*,*)'Drift Distance 1c: ',d1u,d1x,d1v
 263            c               call get_drift_distance(x1a,y1a,z1a,x1b,y1b,z1b,
 264            c     &              n1ub,n1xb,n1vb,d1u,d1x,d1v)
 265            c               if(idflag)
 266            c     &             write(*,*)'Drift Distance 1d: ',d1u,d1x,d1v
 267 brash 1.12             endif
 268 brash 1.11           
 269 brash 1.17 c            write(*,*)'Hit in first chamber ...'
 270            c            write(*,*)'Number of Hits: ',nhu1,nhx1,nhv1
 271 brash 1.12                
 272 brash 1.6           endif
 273            
 274                     if ( istop.ne.0 ) then
 275                        make_hist=0
 276                     endif
 277                  else if ( names(nlevel).eq."fch2" ) then
 278            c         write(*,*)'In fch2 ... inwvol = ',inwvol
 279            c         write(*,*)'Z-value = ',vect(3)
 280                     if(inwvol.eq.1) then
 281                       x2a=vect(1)
 282                       y2a=vect(2)
 283                       z2a=vect(3)
 284                     endif
 285 brash 1.16          if(inwvol.eq.2.and.(ipart.eq.8.or.ipart.eq.9
 286                 &      .or.ipart.eq.14)) then
 287 brash 1.6              x2b=vect(1)
 288                        y2b=vect(2)
 289                        z2b=vect(3)
 290            
 291 brash 1.13             call get_wire_numbers(x2a,y2a,z2a,x2b,y2b,z2b,nhu,nhx,nhv,
 292 brash 1.12      &           n2ua,n2xa,n2va,n2ub,n2xb,n2vb)
 293 brash 1.11 
 294 brash 1.16             nhu2=nhu2+1
 295                        nhx2=nhx2+1
 296                        nhv2=nhv2+1
 297 brash 1.13 
 298                        if(nhu.eq.1.and.nhv.eq.1.and.nhx.eq.1) then
 299 brash 1.12                call get_drift_distance_ejb(x2a,y2a,z2a,x2b,y2b,z2b,
 300 brash 1.14      &              n2ua,n2xa,n2va,d2ue,d2xe,d2ve,idflag)
 301 brash 1.16 c               call get_drift_distance(x2a,y2a,z2a,x2b,y2b,z2b,
 302            c     &              n2ua,n2xa,n2va,d2u,d2x,d2v)
 303 brash 1.12             else
 304                           call get_drift_distance_ejb(x2a,y2a,z2a,x2b,y2b,z2b,
 305 brash 1.14      &              n2ua,n2xa,n2va,d2ue,d2xe,d2ve,idflag)
 306            c               write(*,*)'Drift Distance 2a: ',d2ue,d2xe,d2ve
 307 brash 1.12                call get_drift_distance_ejb(x2a,y2a,z2a,x2b,y2b,z2b,
 308 brash 1.14      &              n2ub,n2xb,n2vb,d2ue,d2xe,d2ve,idflag)
 309            c               write(*,*)'Drift Distance 2b: ',d2ue,d2xe,d2ve
 310 brash 1.16 c               call get_drift_distance(x2a,y2a,z2a,x2b,y2b,z2b,
 311            c     &              n2ua,n2xa,n2va,d2u,d2x,d2v)
 312 brash 1.14 c               write(*,*)'Drift Distance 2c: ',d2u,d2x,d2v
 313 brash 1.16 c               call get_drift_distance(x2a,y2a,z2a,x2b,y2b,z2b,
 314            c     &              n2ub,n2xb,n2vb,d2u,d2x,d2v)
 315 brash 1.14 c               write(*,*)'Drift Distance 2c: ',d2u,d2x,d2v
 316 brash 1.12             endif
 317 brash 1.15 
 318                       call calc_theta_phi(xahch2,yahch2,zahch2,
 319                 &            xbhch2,ybhch2,zbhch2,
 320                 &           x1a,y1a,z1a,x2b,y2b,z2b,
 321 brash 1.17      &            theta_temp,phi_temp)
 322 brash 1.8  
 323 brash 1.17 c	    write(*,*)'Old scattering angle = ',theta_front
 324            c	    write(*,*)'New scattering angle = ',theta_temp
 325            c	    write(*,*)'**************************'
 326                        if(theta_temp.lt.theta_front)then
 327            		theta_front=theta_temp
 328            		phi_front=phi_temp
 329            	    endif
 330            
 331            c            write(*,*)'Hit in second chamber ...'
 332            c            write(*,*)'Number of hits: ',nhu2,nhx2,nhv2
 333 brash 1.6  
 334                     endif
 335            c
 336                     if ( istop.ne.0 ) then
 337                        make_hist=0
 338                     endif
 339                  else if ( names(nlevel).eq."fch3" ) then
 340                     if(inwvol.eq.1) then
 341                       x3a=vect(1)
 342                       y3a=vect(2)
 343                       z3a=vect(3)
 344                     endif
 345 brash 1.16          if(inwvol.eq.2.and.(ipart.eq.8.or.ipart.eq.9
 346                 &      .or.ipart.eq.14)) then
 347 brash 1.6              x3b=vect(1)
 348                        y3b=vect(2)
 349                        z3b=vect(3)
 350            
 351 brash 1.13             call get_wire_numbers(x3a,y3a,z3a,x3b,y3b,z3b,nhu,nhx,nhv,
 352 brash 1.12      &           n3ua,n3xa,n3va,n3ub,n3xb,n3vb)
 353 brash 1.11 
 354 brash 1.16             nhu3=nhu3+1
 355                        nhx3=nhx3+1
 356                        nhv3=nhv3+1
 357 brash 1.13 
 358                        if(nhu.eq.1.and.nhv.eq.1.and.nhx.eq.1) then
 359 brash 1.12                call get_drift_distance_ejb(x3a,y3a,z3a,x3b,y3b,z3b,
 360 brash 1.14      &              n3ua,n3xa,n3va,d3ue,d3xe,d3ve,idflag)
 361 brash 1.16 c               call get_drift_distance(x3a,y3a,z3a,x3b,y3b,z3b,
 362            c     &              n3ua,n3xa,n3va,d3u,d3x,d3v)
 363 brash 1.12             else
 364                           call get_drift_distance_ejb(x3a,y3a,z3a,x3b,y3b,z3b,
 365 brash 1.14      &              n3ua,n3xa,n3va,d3ue,d3xe,d3ve,idflag)
 366            c               write(*,*)'Drift Distance 3a: ',d3ue,d3xe,d3ve
 367 brash 1.12                call get_drift_distance_ejb(x3a,y3a,z3a,x3b,y3b,z3b,
 368 brash 1.14      &              n3ub,n3xb,n3vb,d3ue,d3xe,d3ve,idflag)
 369            c               write(*,*)'Drift Distance 3b: ',d3ue,d3xe,d3ve
 370 brash 1.16 c               call get_drift_distance(x3a,y3a,z3a,x3b,y3b,z3b,
 371            c     &              n3ua,n3xa,n3va,d3u,d3x,d3v)
 372 brash 1.14 c               write(*,*)'Drift Distance 3c: ',d3u,d3x,d3v
 373 brash 1.12             endif
 374                      
 375 brash 1.8  
 376 brash 1.17 c            write(*,*)'Hit in third chamber ...'
 377            c            write(*,*)'Number of Hits: ',nhu3,nhx3,nhv3
 378 brash 1.6  
 379                     endif
 380            c
 381                     if ( istop.ne.0 ) then
 382                        make_hist=0
 383                     endif     
 384                  else if ( names(nlevel).eq."fch4" ) then
 385                     if(inwvol.eq.1) then
 386                       x4a=vect(1)
 387                       y4a=vect(2)
 388                       z4a=vect(3)
 389                     endif
 390 brash 1.16          if(inwvol.eq.2.and.(ipart.eq.8.or.ipart.eq.9
 391                 &      .or.ipart.eq.14)) then
 392 brash 1.6              x4b=vect(1)
 393                        y4b=vect(2)
 394                        z4b=vect(3)
 395            
 396 brash 1.13             call get_wire_numbers(x4a,y4a,z4a,x4b,y4b,z4b,nhu,nhx,nhv,
 397 brash 1.12      &           n4ua,n4xa,n4va,n4ub,n4xb,n4vb)
 398 brash 1.11 
 399 brash 1.16             nhu4=nhu4+1
 400                        nhx4=nhx4+1
 401                        nhv4=nhv4+1
 402 brash 1.13 
 403                        if(nhu.eq.1.and.nhv.eq.1.and.nhx.eq.1) then
 404 brash 1.12                call get_drift_distance_ejb(x4a,y4a,z4a,x4b,y4b,z4b,
 405 brash 1.14      &              n4ua,n4xa,n4va,d4ue,d4xe,d4ve,idflag)
 406 brash 1.16 c               call get_drift_distance(x4a,y4a,z4a,x4b,y4b,z4b,
 407            c     &              n4ua,n4xa,n4va,d4u,d4x,d4v)
 408 brash 1.12             else
 409                           call get_drift_distance_ejb(x4a,y4a,z4a,x4b,y4b,z4b,
 410 brash 1.14      &              n4ua,n4xa,n4va,d4ue,d4xe,d4ve,idflag)
 411            c               write(*,*)'Drift Distance 4a: ',d4ue,d4xe,d4ve
 412 brash 1.12                call get_drift_distance_ejb(x4a,y4a,z4a,x4b,y4b,z4b,
 413 brash 1.14      &              n4ub,n4xb,n4vb,d4ue,d4xe,d4ve,idflag)
 414            c               write(*,*)'Drift Distance 4b: ',d4ue,d4xe,d4ve
 415 brash 1.16 c               call get_drift_distance(x4a,y4a,z4a,x4b,y4b,z4b,
 416            c     &              n4ua,n4xa,n4va,d4u,d4x,d4v)
 417 brash 1.14 c               write(*,*)'Drift Distance 4c: ',d4u,d4x,d4v
 418 brash 1.12             endif
 419                      
 420 brash 1.8  
 421 brash 1.17 c            write(*,*)'Hit in fourth chamber ...'
 422            c            write(*,*)'Wire Numbers: ',nhu4,nhx4,nhv4
 423 brash 1.16 c            write(*,*)'Particle ID: ',ipart
 424 brash 1.6  
 425                     endif
 426            c
 427 brash 1.4           if ( istop.ne.0 ) then
 428                        make_hist=0
 429                     endif
 430 brash 1.2        else if ( istop.ne.0.and. names(nlevel).eq."sci1" ) then
 431                     make_hist=0
 432                  else if ( names(nlevel).eq."anl1" ) then
 433 jones 1.1           if(inwvol.eq.1) then
 434 brash 1.5  c           write(6,*)'We have a hit in the fist analyzer at'
 435            c           write(6,*)'x=',vect(1),' y=',vect(2),' z=',vect(3)
 436 brash 1.4             xdet=vect(1)
 437                       ydet=vect(2)
 438                       zdet=vect(3)
 439 jones 1.1           endif
 440                     if ( istop.ne.0 ) then
 441                        make_hist=0
 442                     endif
 443                  end if
 444            c     
 445            c     
 446            c     store current track parameters (including position ) in jxyz structure.
 447            c     
 448                  call gsxyz
 449            c     
 450            c     moved histograming stuff to gulast
 451            c     
 452            c     write(6,*)'done in gustep'
 453             9999 return
 454 brash 1.6        end
 455            
 456 brash 1.13       subroutine get_wire_numbers(xa,ya,za,xb,yb,zb,nhu,nhx,nhv,
 457 brash 1.12      %     nu1,nx1,nv1,nu2,nx2,nv2)
 458 brash 1.6  
 459 brash 1.7        implicit none
 460            
 461 brash 1.6        real*8 xa,ya,za,xb,yb,zb
 462 brash 1.12       integer*4 nu1,nx1,nv1
 463                  integer*4 nu2,nx2,nv2
 464 brash 1.13       integer*4 nhu,nhx,nhv
 465 brash 1.6  
 466                  real*8 zc,zu,zx,zv,zt,xp,yp,xu,xx,xv,yu,yx,yv,uw,xw,vw
 467 brash 1.7        real*8 anu,anx,anv
 468 brash 1.6  
 469 brash 1.12       nu2=0
 470                  nx2=0
 471                  nv2=0
 472            c
 473 brash 1.6  c We have the (x,y,z) coordinates of the entrance (a) and exit (b) points
 474            c of the track.  We can use this information to calculate the wire numbers that
 475            c were hit in each plane.
 476            c
 477                  zc=(zb-za)/2.0+za
 478                  zu=zc-1.60
 479                  zx=zc
 480                  zv=zc+1.60
 481                  zt=(zb-za)
 482                  xp=(xb-xa)/zt
 483                  yp=(yb-ya)/zt
 484 brash 1.12 c
 485 brash 1.14 c Project to the FRONT of the "cell" associated with each plane.
 486            c
 487                  xu=xa+xp*(zu-za-0.8)
 488                  yu=ya+yp*(zu-za-0.8)
 489                  xx=xa+xp*(zx-za-0.8)
 490                  yx=ya+yp*(zx-za-0.8)
 491                  xv=xa+xp*(zv-za-0.8)
 492                  yv=ya+yp*(zv-za-0.8)      
 493            c
 494            c      xu=xa
 495            c      yu=ya
 496            c      xx=xa
 497            c      yx=ya
 498            c      xv=xa
 499            c      yv=ya
 500 brash 1.6  c
 501                  uw=(xu+yu)/sqrt(2.0)
 502                  xw=xx
 503                  vw=(-xv+yv)/sqrt(2.0)
 504 brash 1.7  c
 505 brash 1.8  c      write(*,*)'********************'
 506 brash 1.10 c      write(*,*)'A: ',xa,ya,za
 507            c      write(*,*)'B: ',xb,yb,zb
 508            c      write(*,*)'U: ',xu,yu,zu
 509            c      write(*,*)'X: ',xx,yx,zx
 510            c      write(*,*)'V: ',xv,yv,zv
 511            c      write(*,*)'W: ',uw,xw,vw
 512 brash 1.14 c      write(*,*)'********************'
 513 brash 1.7  c     
 514                  anu=(-uw-3.592+104.0)/2.0
 515                  anx=(-xw-5.080+84.0)/2.0
 516                  anv=(vw-3.592+104.0)/2.0
 517            c
 518 brash 1.10 c      write(*,*)'Wires: ',anu,anx,anv
 519            c      write(*,*)'********************'
 520 brash 1.12       nu1=anu
 521                  nv1=anv
 522                  nx1=anx
 523                  if((anu-nu1).ge.0.500)nu1=nu1+1
 524                  if((anx-nx1).ge.0.500)nx1=nx1+1
 525                  if((anv-nv1).ge.0.500)nv1=nv1+1
 526            c      write(*,*)'using front of chamber: ',nu1,nx1,nv1
 527            c
 528 brash 1.14 c Now project to the BACK of the "cell" associated with each plane.
 529 brash 1.12 c
 530 brash 1.14       xu=xa+xp*(zu-za+0.8)
 531                  yu=ya+yp*(zu-za+0.8)
 532                  xx=xa+xp*(zx-za+0.8)
 533                  yx=ya+yp*(zx-za+0.8)
 534                  xv=xa+xp*(zv-za+0.8)
 535                  yv=ya+yp*(zv-za+0.8)      
 536            c
 537            c      xu=xb
 538            c      yu=yb
 539            c      xx=xb
 540            c      yx=yb
 541            c      xv=xb
 542            c      yv=yb
 543 brash 1.12 c
 544                  uw=(xu+yu)/sqrt(2.0)
 545                  xw=xx
 546                  vw=(-xv+yv)/sqrt(2.0)
 547 brash 1.7  c
 548 brash 1.12 c      write(*,*)'********************'
 549            c      write(*,*)'A: ',xa,ya,za
 550            c      write(*,*)'B: ',xb,yb,zb
 551            c      write(*,*)'U: ',xu,yu,zu
 552            c      write(*,*)'X: ',xx,yx,zx
 553            c      write(*,*)'V: ',xv,yv,zv
 554 brash 1.10 c      write(*,*)'W: ',uw,xw,vw
 555            c      write(*,*)'********************'
 556 brash 1.12 c     
 557                  anu=(-uw-3.592+104.0)/2.0
 558                  anx=(-xw-5.080+84.0)/2.0
 559                  anv=(vw-3.592+104.0)/2.0
 560            c
 561            c      write(*,*)'Wires: ',anu,anx,anv
 562            c      write(*,*)'********************'
 563                  nu2=anu
 564                  nv2=anv
 565                  nx2=anx
 566                  if((anu-nu2).ge.0.500)nu2=nu2+1
 567                  if((anx-nx2).ge.0.500)nx2=nx2+1
 568                  if((anv-nv2).ge.0.500)nv2=nv2+1
 569 brash 1.13       nhu=1
 570                  nhx=1
 571                  nhv=1
 572                  if(nu1.ne.nu2)nhu=2
 573                  if(nx1.ne.nx2)nhx=2
 574                  if(nv1.ne.nv2)nhv=2
 575 brash 1.7  
 576 brash 1.12       return
 577                  end
 578 brash 1.8  
 579 brash 1.12 c      subroutine get_drift_distance_ejb(xa,ya,za,xb,yb,zb,
 580            c     &           nu,nx,nv,du,dx,dv)
 581            c
 582            c      implicit none
 583            c
 584            c      real*8 xa,ya,za,xb,yb,zb,du,dx,dv
 585            c      integer*4 nu,nx,nv
 586            c      real*8 tphi,ttheta
 587            c      real*8 uw,xw,vw
 588            c      real*8 c11,c12,c21,c22,d1,d2,a,zt,xt,yt
 589            c      real*8 xu,yu,zu
 590            c      real*8 xv,yv,zv
 591            c      real*8 xx,yx,zx
 592            c
 593            c      tphi=(xb-xa)/(zb-za)
 594            c      ttheta=(yb-ya)/(zb-za)
 595            c
 596            c      uw=-2.0*nu-3.592+104.0
 597            c      xw=-2.0*nx-5.080+84.0
 598            c      vw=2.0*nv+3.592-104.0
 599            c      zu=(zb+za)/2.0-1.60
 600 brash 1.12 c      zv=(zb+za)/2.0+1.60
 601            c      zx=(zb+za)/2.0
 602            c
 603            cc      write(*,*)'W: ',uw,xw,vw
 604            cc      write(*,*)'********************'
 605            c
 606            c      c11=tphi-ttheta
 607            c      c12=sqrt(2.0)
 608            c      d1=-xa+ya
 609            c      c21=tphi*tphi+ttheta*ttheta+1.0
 610            c      c22=-ttheta/sqrt(2.0)+tphi/sqrt(2.0)
 611            c      d2=uw*(ttheta+tphi)/sqrt(2.0)-xa*tphi-ya*ttheta+zu-za
 612            c
 613            c      a=(d1*c21-d2*c11)/(c21*c12-c22*c11)
 614            c      zt=(d1-c12*a)/c11
 615            cc      write(*,*)'U Plane zt,a: ',zt,a
 616            c
 617            c      xt=xa+zt*tphi
 618            c      yt=ya+zt*ttheta
 619            c      xu=(uw-a)/sqrt(2.0)
 620            c      yu=(uw+a)/sqrt(2.0)
 621 brash 1.12 c
 622            c      zt=zt+za
 623            c
 624            c      du=sqrt((xt-xu)**2+(yt-yu)**2+(zt-zu)**2)      
 625            c       
 626            c      c11=tphi+ttheta
 627            c      c12=-sqrt(2.0)
 628            c      d1=-xa-ya
 629            c      c21=tphi*tphi+ttheta*ttheta+1.0
 630            c      c22=-ttheta/sqrt(2.0)-tphi/sqrt(2.0)
 631            c      d2=vw*(ttheta+tphi)/sqrt(2.0)-xa*tphi-ya*ttheta+zv-za
 632            c
 633            c      a=(d1*c21-d2*c11)/(c21*c12-c22*c11)
 634            c      zt=(d1-c12*a)/c11
 635            cc      write(*,*)'V Plane zt,a: ',zt,a
 636            c
 637            c      xt=xa+zt*tphi
 638            c      yt=ya+zt*ttheta
 639            c      xv=-(vw-a)/sqrt(2.0)
 640            c      yv=(vw+a)/sqrt(2.0)
 641            c
 642 brash 1.12 c      zt=zt+za
 643            c      
 644            c      dv=sqrt((xt-xv)**2+(yt-yv)**2+(zt-zv)**2)
 645            c     
 646            c      c11=tphi
 647            c      c12=-1.0
 648            c      d1=-ya
 649            c      c21=tphi*tphi+ttheta*ttheta+1.0
 650            c      c22=-ttheta
 651            c      d2=xw*tphi-xa*tphi-ya*ttheta+zx-za
 652            c
 653            c      a=(d1*c21-d2*c11)/(c21*c12-c22*c11)
 654            c      zt=(d1-c12*a)/c11
 655            cc      write(*,*)'X Plane zt,a: ',zt,a
 656            c
 657            c      xt=xa+zt*tphi
 658            c      yt=ya+zt*ttheta
 659            c      xx=xw
 660            c      yx=a
 661            c
 662            c      zt=zt+za
 663 brash 1.12 c      
 664            c      dx=sqrt((xt-xx)**2+(yt-yx)**2+(zt-zx)**2)
 665            c
 666            cc      if((du.gt.1.00)) then
 667 brash 1.11 c         write(*,*)'Calculating Drift Distance ...'
 668            c         write(*,*)'A: ',xa,ya,za
 669            c         write(*,*)'B: ',xb,yb,zb
 670 brash 1.12 cc         write(*,*)'U: ',xu,yu,zu
 671            cc         write(*,*)'V: ',xv,yv,zv
 672            cc         write(*,*)'X: ',xx,yx,zx
 673 brash 1.11 c         write(*,*)'U Drift distance = ',du
 674            c         write(*,*)'V Drift distance = ',dv
 675            c         write(*,*)'X Drift distance = ',dx
 676 brash 1.12 cc      endif
 677            c
 678            c      return
 679            c      end
 680 brash 1.11 
 681            
 682                  subroutine get_drift_distance(xa,ya,za,xb,yb,zb,
 683                 &           nu,nx,nv,distu,distx,distv)
 684            c
 685            c     This subroutine uses the entrance (a) and exit (b)
 686            c     points of a chamber to define the line of the track.
 687            c     It uses the wire number and wire direction to define
 688            c     the wire line.  It then uses these to build parallel
 689            c     planes by computing a normal vector to both of the lines.
 690            c     Finally, it calculates the distance between these two
 691            c     planes which is the distance of shortest approach.
 692            c      
 693                  implicit none
 694            c
 695                  real*8 xa,ya,za,xb,yb,zb
 696                  real*8 distu,distx,distv,xp,yp,zc
 697                  integer*4 nu,nx,nv
 698                  real*8 uw,xw,vw
 699                  real*8 zt,xt,yt
 700                  real*8 xu,yu,zu
 701 brash 1.11       real*8 xv,yv,zv
 702                  real*8 xx,yx,zx
 703            c
 704            c     the direction of each of the lines
 705            c     vect1=track   vectu=u wire
 706 brash 1.14       real*8 vect1(1:3), vectu(1:3)
 707                  real*8 vectx(1:3), vectv(1:3)
 708 brash 1.11 c   
 709            c     the normal vector to both lines
 710 brash 1.14       real*8 normu(1:3)
 711                  real*8 normx(1:3)
 712                  real*8 normv(1:3)
 713 brash 1.11 c
 714            c     the coefficients of the plane
 715 brash 1.14       real*8 pvectu(1:4)
 716                  real*8 pvectx(1:4)
 717                  real*8 pvectv(1:4)
 718 brash 1.11 c
 719                  vect1(1)=xb-xa
 720                  vect1(2)=yb-ya
 721                  vect1(3)=zb-za
 722            c
 723                  zu=(zb+za)/2.0-1.60
 724                  zv=(zb+za)/2.0+1.60
 725                  zx=(zb+za)/2.0
 726            c
 727            c     use line number to calculate distance relative to
 728            c     wire plane, then convert to x and y
 729            c      write(*,*)'nu nx nv',nu,nx,nv
 730                  uw=-2.0*nu-3.592+104.0
 731                  xw=-2.0*nx-5.080+84.0
 732                  vw=2.0*nv+3.592-104.0
 733                  xu=uw/sqrt(2.0)
 734                  yu=uw/sqrt(2.0)      
 735                  xx=xw
 736                  yx=0
 737                  xv=-vw/sqrt(2.0)
 738                  yv=vw/sqrt(2.0)
 739 brash 1.12 c      write(*,*)'uw xu yu zu',uw,xu,yu,zu
 740 brash 1.11 c      write(*,*)'xw xx yx zx',xw,xx,yx,zx
 741            c      write(*,*)'vw xv yv zv',vw,xv,yv,zv
 742            c
 743            c     define direction vector for wires, will be the same
 744            c     for each wire in a given plane, and is known
 745            c     for each plane
 746                  vectu(1)=1.0/sqrt(2.0)
 747                  vectu(2)=1.0/sqrt(2.0)
 748                  vectu(3)=0.0
 749                  vectx(1)=0.0
 750                  vectx(2)=1.0
 751                  vectx(3)=0.0
 752                  vectv(1)=-1.0/sqrt(2.0)
 753                  vectv(2)=1.0/sqrt(2.0)
 754                  vectv(3)=0.0
 755            c
 756 brash 1.12 c      write(*,*)'distance calculations .....'
 757            c      write(*,*)xa,ya,za
 758            c      write(*,*)vect1(1),vect1(2),vect1(3)
 759            c      write(*,*)xu,yu,zu
 760            c      write(*,*)vectu(1),vectu(2),vectu(3)
 761            c      write(*,*)xx,yx,zx
 762            c      write(*,*)vectx(1),vectx(2),vectx(3)
 763            c      write(*,*)xv,yv,zv
 764            c      write(*,*)vectv(1),vectv(2),vectv(3)
 765            c      write(*,*)'distance calculations .....'
 766            c
 767 brash 1.11 c     cross product
 768                  normu(1)=vect1(2)*vectu(3)-vect1(3)*vectu(2)
 769                  normu(2)=vect1(1)*vectu(3)-vect1(3)*vectu(1)
 770                  normu(3)=vect1(1)*vectu(2)-vect1(2)*vectu(1)
 771                  normx(1)=vect1(2)*vectx(3)-vect1(3)*vectx(2)
 772                  normx(2)=vect1(1)*vectx(3)-vect1(3)*vectx(1)
 773                  normx(3)=vect1(1)*vectx(2)-vect1(2)*vectx(1)
 774                  normv(1)=vect1(2)*vectv(3)-vect1(3)*vectv(2)
 775                  normv(2)=vect1(1)*vectv(3)-vect1(3)*vectv(1)
 776                  normv(3)=vect1(1)*vectv(2)-vect1(2)*vectv(1)
 777            c      
 778                  pvectu(1)=normu(1)
 779                  pvectu(2)=normu(2)
 780                  pvectu(3)=normu(3)
 781                  pvectu(4)=normu(1)*(-xu)+normu(2)*(-yu)+normu(3)*(-zu)
 782                  pvectx(1)=normx(1)
 783                  pvectx(2)=normx(2)
 784                  pvectx(3)=normx(3)
 785                  pvectx(4)=normx(1)*(-xx)+normx(2)*(-yx)+normx(3)*(-zx)
 786                  pvectv(1)=normv(1)
 787                  pvectv(2)=normv(2)
 788 brash 1.11       pvectv(3)=normv(3)
 789                  pvectv(4)=normv(1)*(-xv)+normv(2)*(-yv)+normv(3)*(-zv)
 790            c
 791            c     distance formula
 792                  distu=(pvectu(1)*xa+pvectu(2)*ya+pvectu(3)*za+pvectu(4))
 793                 &     /sqrt(normu(1)**2+normu(2)**2+normu(3)**2)
 794                  distx=(pvectx(1)*xa+pvectx(2)*ya+pvectx(3)*za+pvectx(4))
 795                 &     /sqrt(normx(1)**2+normx(2)**2+normx(3)**2)
 796                  distv=(pvectv(1)*xa+pvectv(2)*ya+pvectv(3)*za+pvectv(4))
 797                 &     /sqrt(normv(1)**2+normv(2)**2+normv(3)**2)
 798            c      write(*,*)'Drift distance: ',distu, distx, distv
 799 brash 1.14 c     
 800            c        write(*,*)'Brads routine ....' 
 801            c        write(*,*)xa,ya,za
 802            c        write(*,*)xb,yb,zb
 803            c        write(*,*)nu,nx,nv
 804            c   	write(*,*)uw,xw,vw
 805            c        write(*,*)'Drift distance: ',distu, distx, distv
 806                  
 807 brash 1.11       return
 808                  end
 809            
 810 brash 1.12       subroutine get_drift_distance_ejb(xa,ya,za,xb,yb,zb,
 811 brash 1.14      &           nu,nx,nv,distu,distx,distv,idflag)
 812 brash 1.12 c
 813            c Author: Ed Brash - December 15th, 2005
 814            c Yet another attempt at a full drift distance calculation
 815            c
 816                  implicit none
 817            c
 818                  real*8 xa,ya,za,xb,yb,zb
 819                  real*8 distu,distx,distv,xp,yp,zc
 820                  integer*4 nu,nx,nv
 821                  real*8 uw,xw,vw
 822                  real*8 zt,xt,yt
 823                  real*8 xu,yu,zu
 824                  real*8 xv,yv,zv
 825                  real*8 xx,yx,zx
 826 brash 1.14       logical idflag
 827 brash 1.12 c
 828            c     the direction of each of the lines
 829            c     vect1=track   vectu=u wire
 830                  real*8 vect1(1:3), vectu(1:3)
 831                  real*8 vectx(1:3), vectv(1:3)
 832            
 833            c     the difference vector between the defining points
 834                  real*8 du(1:3),dx(1:3),dv(1:3)
 835            c   
 836            c     the normal vector to both lines
 837                  real*8 normu(1:3)
 838                  real*8 normx(1:3)
 839                  real*8 normv(1:3)
 840                  real*8 normumag,normxmag,normvmag
 841            c
 842            c     the coefficients of the distance vector
 843                  real*8 dvectu(1:4)
 844                  real*8 dvectx(1:4)
 845                  real*8 dvectv(1:4)
 846            c
 847 brash 1.14       idflag=.false.
 848 brash 1.12       vect1(1)=xb-xa
 849                  vect1(2)=yb-ya
 850                  vect1(3)=zb-za
 851            c
 852                  zu=(zb+za)/2.0-1.60
 853                  zv=(zb+za)/2.0+1.60
 854                  zx=(zb+za)/2.0
 855            c
 856            c     use line number to calculate distance relative to
 857            c     wire plane, then convert to x and y
 858            c      write(*,*)'nu nx nv',nu,nx,nv
 859                  uw=-2.0*nu-3.592+104.0
 860                  xw=-2.0*nx-5.080+84.0
 861                  vw=2.0*nv+3.592-104.0
 862                  xu=uw/sqrt(2.0)
 863                  yu=uw/sqrt(2.0)      
 864                  xx=xw
 865                  yx=0
 866                  xv=-vw/sqrt(2.0)
 867                  yv=vw/sqrt(2.0)
 868            c      write(*,*)'uw xu yu zu',uw,xu,yu,zu
 869 brash 1.12 c      write(*,*)'xw xx yx zx',xw,xx,yx,zx
 870            c      write(*,*)'vw xv yv zv',vw,xv,yv,zv
 871            c
 872            c     define direction vector for wires, will be the same
 873            c     for each wire in a given plane, and is known
 874            c     for each plane
 875                  vectu(1)=1.0/sqrt(2.0)
 876                  vectu(2)=-1.0/sqrt(2.0)
 877                  vectu(3)=0.0
 878                  vectx(1)=0.0
 879                  vectx(2)=1.0
 880                  vectx(3)=0.0
 881                  vectv(1)=1.0/sqrt(2.0)
 882                  vectv(2)=1.0/sqrt(2.0)
 883                  vectv(3)=0.0
 884            c
 885            c      write(*,*)'distance calculations .....'
 886            c      write(*,*)xa,ya,za
 887            c      write(*,*)vect1(1),vect1(2),vect1(3)
 888            c      write(*,*)xu,yu,zu
 889            c      write(*,*)vectu(1),vectu(2),vectu(3)
 890 brash 1.12 c      write(*,*)xx,yx,zx
 891            c      write(*,*)vectx(1),vectx(2),vectx(3)
 892            c      write(*,*)xv,yv,zv
 893            c      write(*,*)vectv(1),vectv(2),vectv(3)
 894            c      write(*,*)'distance calculations .....'
 895            c
 896            c     cross product
 897                  normu(1)=vect1(2)*vectu(3)-vect1(3)*vectu(2)
 898                  normu(2)=vect1(3)*vectu(1)-vect1(1)*vectu(3)
 899                  normu(3)=vect1(1)*vectu(2)-vect1(2)*vectu(1)
 900                  normx(1)=vect1(2)*vectx(3)-vect1(3)*vectx(2)
 901                  normx(2)=vect1(3)*vectx(1)-vect1(1)*vectx(3)
 902                  normx(3)=vect1(1)*vectx(2)-vect1(2)*vectx(1)
 903                  normv(1)=vect1(2)*vectv(3)-vect1(3)*vectv(2)
 904                  normv(2)=vect1(3)*vectv(1)-vect1(1)*vectv(3)
 905                  normv(3)=vect1(1)*vectv(2)-vect1(2)*vectv(1)
 906            c      write(*,*)normu(1),normu(2),normu(3)
 907            c
 908                  normumag=sqrt(normu(1)**2+normu(2)**2+normu(3)**2)
 909                  normxmag=sqrt(normx(1)**2+normx(2)**2+normx(3)**2)
 910                  normvmag=sqrt(normv(1)**2+normv(2)**2+normv(3)**2)
 911 brash 1.12       normu(1)=normu(1)/normumag
 912                  normu(2)=normu(2)/normumag
 913                  normu(3)=normu(3)/normumag
 914 brash 1.14       normx(1)=normx(1)/normxmag
 915                  normx(2)=normx(2)/normxmag
 916                  normx(3)=normx(3)/normxmag
 917                  normv(1)=normv(1)/normvmag
 918                  normv(2)=normv(2)/normvmag
 919                  normv(3)=normv(3)/normvmag
 920 brash 1.12 c      write(*,*)normumag
 921            c
 922                  du(1)=xa-xu
 923                  du(2)=ya-yu
 924                  du(3)=za-zu      
 925                  dx(1)=xa-xx
 926                  dx(2)=ya-yx
 927                  dx(3)=za-zx      
 928                  dv(1)=xa-xv
 929                  dv(2)=ya-yv
 930                  dv(3)=za-zv
 931            c
 932            c
 933            c     distance formula
 934                  distu=du(1)*normu(1)+du(2)*normu(2)+du(3)*normu(3)     
 935                  distx=dx(1)*normx(1)+dx(2)*normx(2)+dx(3)*normx(3)     
 936                  distv=dv(1)*normv(1)+dv(2)*normv(2)+dv(3)*normv(3)     
 937            c
 938 brash 1.14       if(distu.gt.1.0.or.distx.gt.1.0.or.distv.gt.1.0)
 939                 &            idflag=.true. 
 940                  if(distu.gt.1.28.or.distx.gt.1.28.or.distv.gt.1.28)then
 941                    write(*,*)'Problem Child !!!'
 942                    write(*,*)'distance calculations .....'
 943                    write(*,*)xa,ya,za
 944            c        write(*,*)vect1(1),vect1(2),vect1(3)
 945                    write(*,*)xu,yu,zu
 946            c        write(*,*)vectu(1),vectu(2),vectu(3)
 947                    write(*,*)xx,yx,zx
 948            c        write(*,*)vectx(1),vectx(2),vectx(3)
 949                    write(*,*)xv,yv,zv
 950            c        write(*,*)vectv(1),vectv(2),vectv(3)
 951                    write(*,*)'normalization factors'
 952                    write(*,*)normu(1),normu(2),normu(3)
 953                    write(*,*)normumag
 954                    write(*,*)normx(1),normx(2),normx(3)
 955                    write(*,*)normxmag
 956                    write(*,*)normv(1),normv(2),normv(3)
 957                    write(*,*)normvmag
 958                    write(*,*)'Drift distance: ',distu, distx, distv
 959 brash 1.14       endif
 960 brash 1.12 c      
 961                  return
 962                  end
 963            
 964 brash 1.11 
 965                  subroutine calc_theta_phi(xin1,yin1,zin1,xin2,yin2,zin2,
 966                 &     xsc1,ysc1,zsc1,xsc2,ysc2,zsc2,theta,phi)
 967            c
 968                  implicit none
 969 brash 1.12       include 'fpp_local.h'
 970                  include 'geant_local.h'
 971 brash 1.11 c
 972                  real*8 xin1,yin1,zin1,xin2,yin2,zin2
 973                  real*8 xsc1,ysc1,zsc1,xsc2,ysc2,zsc2,theta,phi
 974                  real*8 ftheta, fphi, fpsi
 975 brash 1.12       real*8 lin,lout,theta_ejb,phi_ejb
 976 brash 1.11 c
 977                  real invect(1:3)
 978                  real scvect(1:3)
 979                  real scvect2(1:3)
 980 brash 1.12       real in(1:3)
 981                  real out(1:3)
 982                  real scat(1:3)
 983 brash 1.11 c
 984                  invect(1)=xin2-xin1
 985                  invect(2)=yin2-yin1
 986                  invect(3)=zin2-zin1
 987                  scvect(1)=xsc2-xsc1
 988                  scvect(2)=ysc2-ysc1
 989                  scvect(3)=zsc2-zsc1
 990 brash 1.12 c      write(*,*)'INCOMING: ',invect(1),invect(2),invect(3)
 991            c      write(*,*)'SCATTERED: ',scvect(1),scvect(2),scvect(3)
 992            c
 993            c EJB calculation of theta and phi
 994            c
 995                  in(1)=invect(1)/invect(3)
 996                  in(2)=invect(2)/invect(3)
 997                  in(3)=invect(3)/invect(3)
 998                  out(1)=scvect(1)/scvect(3)
 999                  out(2)=scvect(2)/scvect(3)
1000                  out(3)=scvect(3)/scvect(3)
1001                  lin=sqrt(in(1)**2+in(2)**2+in(3)**2)
1002                  lout=sqrt(out(1)**2+out(2)**2+out(3)**2)
1003                  scat(1)=out(1)-in(1)
1004                  scat(2)=out(2)-in(2)
1005                  scat(3)=out(3)
1006                  x_ejb=scat(1)
1007                  y_ejb=scat(2)
1008                  z_ejb=scat(3)
1009                  if(scat(1).ge.0.0.and.scat(2).gt.0.0)then
1010                     phi_ejb=atan(scat(1)/scat(2))*57.2957795
1011 brash 1.12       else if(scat(1).ge.0.0.and.scat(2).lt.0.0)then
1012                     phi_ejb=atan(scat(1)/scat(2))*57.2957795+180.00
1013                  else if(scat(1).le.0.0.and.scat(2).lt.0.0)then
1014                     phi_ejb=atan(scat(1)/scat(2))*57.2957795+180.00
1015                  else if(scat(1).le.0.0.and.scat(2).gt.0.0)then
1016                     phi_ejb=atan(scat(1)/scat(2))*57.2957795+360.00
1017                  endif
1018            c
1019                  theta_ejb=acos((in(1)*out(1)+in(2)*out(2)+in(3)*out(3))/
1020                 &     (lin*lout))*57.2957795
1021            c      write(*,*)'EJB Incoming Vector = ',in(1),in(2),in(3)
1022            c      write(*,*)'EJB Outgoing Vector = ',out(1),out(2),out(3)
1023            c      write(*,*)'EJB Scattered Vector = ',scat(1),scat(2),scat(3)
1024            c      write(*,*)'EJB Thetas = ',theta_ejb,phi_ejb
1025 brash 1.11 c
1026 brash 1.12 c end EJB calculation
1027            c      
1028            
1029            
1030 brash 1.11       ftheta=acos(invect(3)/sqrt(invect(1)**2+invect(3)**2))
1031                  fphi=acos(invect(3)/sqrt(invect(2)**2+invect(3)**2))
1032                  fpsi=acos(sqrt(invect(2)**2+invect(3)**2)/sqrt(invect(1)**2
1033                 &     +invect(2)**2+invect(3)**2))
1034            c
1035 brash 1.12 c      write(*,*)'ftheta, fphi, fpsi',
1036            c     &    ftheta*57.296,fphi*57.296,fpsi*57.296
1037 brash 1.11       scvect2(1)=scvect(1)*cos(fpsi)-sin(fpsi)*(scvect(2)*sin(fphi)
1038                 &     +scvect(3)*cos(fphi))
1039                  scvect2(2)=scvect(2)*cos(fphi)-scvect(3)*sin(fphi)
1040                  scvect2(3)=scvect(1)*sin(fpsi)+cos(fpsi)*(scvect(2)*sin(fphi)
1041                 &     +scvect(3)*cos(fphi))
1042            c
1043 brash 1.12 c      write(*,*)'SCATTERED 2: ',scvect2(1),scvect2(2),scvect2(3)
1044 brash 1.11       theta=atan(sqrt(scvect2(1)**2+scvect2(2)**2)/scvect2(3))*57.2957795
1045                  phi=atan(scvect2(1)/scvect2(2))*57.2957795
1046                  if (scvect2(1).lt.0.0.and.scvect2(2).gt.0.0) 
1047                 &  phi=phi+360.00
1048                  if (scvect2(1).lt.0.0.and.scvect2(2).lt.0.0) 
1049                 &  phi=phi+180.00
1050                  if (scvect2(1).gt.0.0.and.scvect2(2).lt.0.0) 
1051                 &  phi=phi+180.00
1052 brash 1.12 
1053            c      write(*,*)'Theta,phi =',theta,phi
1054 brash 1.15       theta=theta_ejb
1055                  phi=phi_ejb
1056 brash 1.11 c
1057                  return
1058                  end
1059            
1060 brash 1.7  
1061                  
1062            
1063                  
1064            
1065                  
1066                  
1067                  
1068 jones 1.1        

Analyzer/Replay: Mark Jones, Documents: Stephen Wood
Powered by
ViewCVS 0.9.2-cvsgraph-1.4.0