(file) Return to gustep.f CVS log (file) (dir) Up to [HallC] / geant_gep / src

   1 jones 1.1       subroutine gustep
   2           c
   3           c     this subroutine was written by jpsullivan april 21-22, 1993
   4           c     the tracking realated part is relatively simple -- if the
   5           c     particle leave the volume called 'targ', throw it away.
   6           c     it also makes a bunch of histograms
   7           c     
   8           c     *keep,gctrak.
   9           *--   author :
  10 brash 1.13 
  11                  implicit none
  12            
  13                  integer*4 mylast
  14                  integer*4 nhu,nhv,nhx
  15            
  16 jones 1.1        common/gctrak/vect(7),getot,gekin,vout(7),nmec,lmec(30),namec(30)
  17                 +     ,nstep ,maxnst,destep,destel,safety,sleng 
  18                 +     ,step  ,snext ,sfield
  19                 +     ,tofg  ,gekrat,upwght,ignext,inwvol,istop ,idecad,iekbin
  20                 +     , ilosl, imull,ingoto,nldown,nlevin,nlvsav,istory
  21            c     
  22                  integer nmec,lmec,namec,nstep ,maxnst,ignext,inwvol,istop
  23                 +     ,idecad,iekbin,ilosl, imull,ingoto,nldown,nlevin
  24                 +     ,nlvsav,istory
  25                  real  vect,getot,gekin,vout,destep,destel,safety,sleng ,step
  26                 +     ,snext,sfield,tofg  ,gekrat,upwght
  27            c     end gctrak
  28            *     keep,gcvolu.
  29            *--   author :
  30                  common/gcvolu/nlevel,names(15),number(15),
  31                 +     lvolum(15),lindex(15),infrom,nlevmx,nldev(15),linmx(15),
  32                 +     gtran(3,15),grmat(10,15),gonly(15),glx(3)
  33            c     
  34                  integer nlevel,number,lvolum,lindex,infrom,nlevmx,
  35                 +     nldev,linmx
  36                  character*4 names
  37 jones 1.1        real gtran,grmat,gonly,glx
  38            c     end gcvolu
  39            c     
  40            *     keep,gcbank.
  41            *--   author :
  42                  integer iq,lq,nzebra,ixstor,ixdiv,ixcons,lmain,lr1
  43                  integer kwbank,kwwork,iws
  44                  real gversn,zversn,fendq,ws,q
  45            c     
  46                  parameter (kwbank=69000,kwwork=5200)
  47                  common/gcbank/nzebra,gversn,zversn,ixstor,ixdiv,ixcons,fendq(16)
  48                 +     ,lmain,lr1,ws(kwbank)
  49                  dimension iq(2),q(2),lq(8000),iws(2)
  50                  equivalence (q(1),iq(1),lq(9)),(lq(1),lmain),(iws(1),ws(1))
  51                  common/gclink/jdigi ,jdraw ,jhead ,jhits ,jkine ,jmate ,jpart
  52                 +     ,jrotm ,jrung ,jset  ,jstak ,jgstat,jtmed ,jtrack,jvertx
  53                 +     ,jvolum,jxyz  ,jgpar ,jgpar2,jsklt
  54            c     
  55                  integer       jdigi ,jdraw ,jhead ,jhits ,jkine ,jmate ,jpart
  56                 +     ,jrotm ,jrung ,jset  ,jstak ,jgstat,jtmed ,jtrack,jvertx
  57                 +     ,jvolum,jxyz  ,jgpar,jgpar2 ,jsklt
  58 jones 1.1  c     
  59            *     keep,gcking.
  60            *--   author :
  61                  common/gcking/kcase,ngkine,gkin(5,100),tofd(100),iflgk(100)
  62                  integer       kcase,ngkine ,iflgk
  63                  real          gkin,tofd
  64 brash 1.16       character*4 chcase
  65 jones 1.1  c     end gcking
  66            c     
  67            *     keep,gckine.
  68            *--   author :
  69            *--   author :
  70                  integer       ikine,itra,istak,ivert,ipart,itrtyp,napart,ipaold
  71                  real          pkine,amass,charge,tlife,vert,pvert
  72                  common/gckine/ikine,pkine(10),itra,istak,ivert,ipart,itrtyp
  73                 +     ,napart(5),amass,charge,tlife,vert(3),pvert(4),ipaold
  74            c     end gckine
  75            c     
  76                  integer ihset,ihdet,iset,idet,idtype,nvname,numbv
  77                  common/gcsets/ihset,ihdet,iset,idet,idtype,nvname,numbv(20)
  78                  real x1,y1,z1,lpar,v1,v2,v3,newdist,x1new,y1new,z1new
  79                  real xstr,ystr,zstr,xstrnew,ystrnew,zstrnew
  80                  real rotmat2,rotmat3,rotmat4,rotmat1
  81 brash 1.6  c
  82 jones 1.1        common/geomstep/rotmat1(3,3),rotmat2(3,3),rotmat3(3,3),
  83                 &     rotmat4(3,3)
  84            c     
  85                  include 'fpp_local.h'
  86                  include 'geant_local.h'
  87            c      include 'parameter.h'
  88            c      include 'espace_type.h'
  89            c      include 'detector.h'
  90            c      include 'transport.h'
  91            c      include 'option.h'
  92            c     
  93            c     
  94                  integer i,make_hist,ioff,ihit,ieffcheck
  95                  real pt_pi,ppar_pi,arg1,arg2,rapid_pi,pchmb,hits(6)
  96                  real a,b,c,beta,z,y,straw,ypath,rndm(3),ycompare
  97 brash 1.14       logical idflag
  98                  real*8 d1uetemp,d1xetemp,d1vetemp
  99 brash 1.17       real*8 theta_temp,phi_temp
 100 brash 1.19       real*8 x0f,y0f,tthetaf,tphif
 101                  real*8 x0r,y0r,tthetar,tphir
 102                  real*8 zmid,zclose_temp,sclose_temp
 103 brash 1.2  c      write(6,*)'entering gustep'
 104            c      write(6,*)'inwvol =',inwvol
 105            c      write(6,*)'position =',vect(1),vect(2),vect(3)
 106            c      write(6,*)'names =',names(nlevel)
 107 jones 1.1  c     
 108            c
 109            c
 110                  if ( ngkine.gt.0. ) then
 111                     do i=1,nmec
 112                        if ( lmec(i).eq.12 ) then
 113            c               write ( 6,* ) ' gustep: hadronic interaction'
 114            c               write ( 6,* ) ' nevent=',nevent
 115                        end if
 116                     end do
 117                     mylast = min(100,ngkine)
 118                     do i=1,mylast
 119 brash 1.16 c         write(*,*)'Secondaries Loop ...',i,' particle = ',gkin(5,i)
 120            c         if(gkin(5,i).eq.14)then
 121            c		write(*,*)'Total E =',gkin(4,i)
 122            c		write(*,*)'KE = ',gkin(4,i)-.93827
 123            c	 elseif(gkin(5,i).eq.8.or.gkin(5,i).eq.9)then
 124            c		write(*,*)'Total E =',gkin(4,i)
 125            c		write(*,*)'KE = ',gkin(4,i)-.1395
 126            c	 endif	
 127                     if(gkin(5,i).eq.14.or.gkin(5,i).eq.8.or.
 128                 &          gkin(5,i).eq.9)then
 129            	 	iflgk(i)=1
 130            	 else
 131            	 	iflgk(i)=-1
 132            	 endif
 133            c            iflgk(i) = 1
 134            c            if ( gkin(5,i).eq.4 ) iflgk(i) = 0
 135            c            if ( gkin(4,i).gt.0.001 ) iflgk(i)=0
 136 jones 1.1           end do
 137            c         n_2nd = n_2nd + ngkine
 138                  endif
 139            c     
 140            c  the following call makes sure all of the secondary particles
 141            c  get tracked too (provided the flag iflgk(i) for that particle
 142            c  was set in the loop above -- this point is not correctly or
 143            c  clearly documented in the version of the geant manual i have).
 144            c
 145 brash 1.16       if(sectrack)then
 146            c       write(*,*)'SECONDARY TRACKING ...'
 147            c       write(*,*)'Number of secondaries = ',ngkine
 148            c       call uhtoc(kcase,4,chcase,4)
 149            c       write(*,*)'Source of interaction = ',chcase
 150            c       do i=1,ngkine
 151            c	write(*,*)'Secondary ',i,' ID =',gkin(5,i)
 152            c        if(gkin(5,i).eq.14.or.gkin(5,i).eq.8.or.
 153            c     &         gkin(5,i).eq.9)then
 154            c		iflgk(i)=1
 155            c	else
 156            c		iflgk(i)=-1
 157            c	endif
 158            c       enddo
 159            
 160                   call gsking ( 0 )
 161                  endif
 162 jones 1.1  c     
 163 brash 1.6  c      write(*,*)'In GUSTEP: ... names(nlevel) = ',names(nlevel)
 164 brash 1.11 c      write(*,*)'In GUSTEP: ... inwvol = ',inwvol
 165 brash 1.6  
 166 jones 1.1        make_hist = 0
 167                  if ( inwvol.eq.1 .and. names(nlevel).eq."hall" ) then
 168                     make_hist=1
 169            c     
 170            c     if we get here, the tracking is done for this track
 171            c     (istop=1) but make a bunch of histograms before exitting
 172            c     note that ipart=8 means a pi+ and 9 is a pi-
 173            c     
 174            c     istop = 1
 175                  else if ( istop.ne.0.and. names(nlevel).eq."aira" ) then
 176                     make_hist=0
 177                  else if ( istop.ne.0.and. names(nlevel).eq."airb" ) then
 178                     make_hist=0
 179                  else if ( istop.ne.0.and. names(nlevel).eq."airc" ) then
 180                     make_hist=0
 181                  else if ( istop.ne.0.and. names(nlevel).eq."aird" ) then
 182                     make_hist=0
 183 brash 1.2        else if ( istop.ne.0.and. names(nlevel).eq."aire" ) then
 184                     make_hist=0
 185                  else if ( istop.ne.0.and. names(nlevel).eq."airf" ) then
 186                     make_hist=0
 187 brash 1.6        else if ( names(nlevel).eq."airg" ) then
 188            c         write(*,*)'In airg ... inwvol = ',inwvol
 189            c         write(*,*)'Z-value = ',vect(3)
 190                     if (istop.ne.0) then
 191                        make_hist=0
 192                     endif
 193                  else if ( names(nlevel).eq."HALL" ) then
 194            c         write(*,*)'In HALL ... inwvol = ',inwvol
 195            c         write(*,*)'Z-value = ',vect(3)
 196                     if (istop.ne.0) then
 197                        make_hist=0
 198                     endif
 199 brash 1.2        else if ( istop.ne.0.and. names(nlevel).eq."airh" ) then
 200                     make_hist=0
 201                  else if ( istop.ne.0.and. names(nlevel).eq."hch1" ) then
 202                     make_hist=0
 203 brash 1.11       else if ( names(nlevel).eq."hch2" ) then
 204            c	 write(*,*)'In hch2'
 205                     if(inwvol.eq.1) then
 206            c           write(6,*)'Coordinates at hch2'
 207            c           write(6,*)'x=',vect(1),' y=',vect(2),' z=',vect(3)
 208                       xahch2=vect(1)
 209                       yahch2=vect(2)
 210                       zahch2=vect(3)
 211                     endif
 212                     if(inwvol.eq.2) then
 213                        xbhch2=vect(1)
 214                        ybhch2=vect(2)
 215                        zbhch2=vect(3)
 216                     endif
 217            
 218                     if ( istop.ne.0 ) then
 219                        make_hist=0
 220                     endif
 221 brash 1.4        else if ( names(nlevel).eq."fch1" ) then
 222 brash 1.6  c         write(*,*)'In fch1 ... inwvol = ',inwvol
 223 brash 1.4           if(inwvol.eq.1) then
 224 brash 1.5  c           write(6,*)'Coordinates at fch1'
 225            c           write(6,*)'x=',vect(1),' y=',vect(2),' z=',vect(3)
 226 brash 1.6             x1a=vect(1)
 227                       y1a=vect(2)
 228                       z1a=vect(3)
 229 brash 1.4           endif
 230 brash 1.16          if(inwvol.eq.2.and.(ipart.eq.8.or.ipart.eq.9.
 231                 &         or.ipart.eq.14)) then
 232 brash 1.6              x1b=vect(1)
 233                        y1b=vect(2)
 234                        z1b=vect(3)
 235            
 236 brash 1.13             call get_wire_numbers(x1a,y1a,z1a,x1b,y1b,z1b,nhu,nhx,nhv,
 237 brash 1.12      &           n1ua,n1xa,n1va,n1ub,n1xb,n1vb)
 238 brash 1.6  
 239 brash 1.16             nhu1=nhu1+1
 240                        nhx1=nhx1+1
 241                        nhv1=nhv1+1
 242 brash 1.13 
 243                        if(nhu.eq.1.and.nhv.eq.1.and.nhx.eq.1) then
 244 brash 1.14                idflag=.false.
 245 brash 1.12                call get_drift_distance_ejb(x1a,y1a,z1a,x1b,y1b,z1b,
 246 brash 1.14      &              n1ua,n1xa,n1va,d1ue,d1xe,d1ve,idflag)
 247 brash 1.16 c               call get_drift_distance(x1a,y1a,z1a,x1b,y1b,z1b,
 248            c     &              n1ua,n1xa,n1va,d1u,d1x,d1v)
 249 brash 1.12             else
 250                           call get_drift_distance_ejb(x1a,y1a,z1a,x1b,y1b,z1b,
 251 brash 1.14      &              n1ua,n1xa,n1va,d1ue,d1xe,d1ve,idflag)
 252                           d1uetemp=d1ue
 253                           d1xetemp=d1xe
 254                           d1vetemp=d1ve
 255 brash 1.12                call get_drift_distance_ejb(x1a,y1a,z1a,x1b,y1b,z1b,
 256 brash 1.14      &              n1ub,n1xb,n1vb,d1ue,d1xe,d1ve,idflag)
 257 brash 1.20 c               if(idflag)
 258            c     &             write(*,*)'Drift Distance 1a: ',
 259            c     &                 d1uetemp,d1xetemp,d1vetemp
 260            c               if(idflag)
 261            c     &             write(*,*)'Drift Distance 1b: ',d1ue,d1xe,d1ve
 262 brash 1.16 c               call get_drift_distance(x1a,y1a,z1a,x1b,y1b,z1b,
 263            c     &              n1ua,n1xa,n1va,d1u,d1x,d1v)
 264            c               if(idflag)
 265            c     &             write(*,*)'Drift Distance 1c: ',d1u,d1x,d1v
 266            c               call get_drift_distance(x1a,y1a,z1a,x1b,y1b,z1b,
 267            c     &              n1ub,n1xb,n1vb,d1u,d1x,d1v)
 268            c               if(idflag)
 269            c     &             write(*,*)'Drift Distance 1d: ',d1u,d1x,d1v
 270 brash 1.12             endif
 271 brash 1.11           
 272 brash 1.17 c            write(*,*)'Hit in first chamber ...'
 273            c            write(*,*)'Number of Hits: ',nhu1,nhx1,nhv1
 274 brash 1.12                
 275 brash 1.6           endif
 276            
 277                     if ( istop.ne.0 ) then
 278                        make_hist=0
 279                     endif
 280                  else if ( names(nlevel).eq."fch2" ) then
 281            c         write(*,*)'In fch2 ... inwvol = ',inwvol
 282            c         write(*,*)'Z-value = ',vect(3)
 283                     if(inwvol.eq.1) then
 284                       x2a=vect(1)
 285                       y2a=vect(2)
 286                       z2a=vect(3)
 287                     endif
 288 brash 1.16          if(inwvol.eq.2.and.(ipart.eq.8.or.ipart.eq.9
 289                 &      .or.ipart.eq.14)) then
 290 brash 1.6              x2b=vect(1)
 291                        y2b=vect(2)
 292                        z2b=vect(3)
 293            
 294 brash 1.13             call get_wire_numbers(x2a,y2a,z2a,x2b,y2b,z2b,nhu,nhx,nhv,
 295 brash 1.12      &           n2ua,n2xa,n2va,n2ub,n2xb,n2vb)
 296 brash 1.11 
 297 brash 1.16             nhu2=nhu2+1
 298                        nhx2=nhx2+1
 299                        nhv2=nhv2+1
 300 brash 1.13 
 301                        if(nhu.eq.1.and.nhv.eq.1.and.nhx.eq.1) then
 302 brash 1.12                call get_drift_distance_ejb(x2a,y2a,z2a,x2b,y2b,z2b,
 303 brash 1.14      &              n2ua,n2xa,n2va,d2ue,d2xe,d2ve,idflag)
 304 brash 1.16 c               call get_drift_distance(x2a,y2a,z2a,x2b,y2b,z2b,
 305            c     &              n2ua,n2xa,n2va,d2u,d2x,d2v)
 306 brash 1.12             else
 307                           call get_drift_distance_ejb(x2a,y2a,z2a,x2b,y2b,z2b,
 308 brash 1.14      &              n2ua,n2xa,n2va,d2ue,d2xe,d2ve,idflag)
 309            c               write(*,*)'Drift Distance 2a: ',d2ue,d2xe,d2ve
 310 brash 1.12                call get_drift_distance_ejb(x2a,y2a,z2a,x2b,y2b,z2b,
 311 brash 1.14      &              n2ub,n2xb,n2vb,d2ue,d2xe,d2ve,idflag)
 312            c               write(*,*)'Drift Distance 2b: ',d2ue,d2xe,d2ve
 313 brash 1.16 c               call get_drift_distance(x2a,y2a,z2a,x2b,y2b,z2b,
 314            c     &              n2ua,n2xa,n2va,d2u,d2x,d2v)
 315 brash 1.14 c               write(*,*)'Drift Distance 2c: ',d2u,d2x,d2v
 316 brash 1.16 c               call get_drift_distance(x2a,y2a,z2a,x2b,y2b,z2b,
 317            c     &              n2ub,n2xb,n2vb,d2u,d2x,d2v)
 318 brash 1.14 c               write(*,*)'Drift Distance 2c: ',d2u,d2x,d2v
 319 brash 1.12             endif
 320 brash 1.15 
 321                       call calc_theta_phi(xahch2,yahch2,zahch2,
 322                 &            xbhch2,ybhch2,zbhch2,
 323                 &           x1a,y1a,z1a,x2b,y2b,z2b,
 324 brash 1.17      &            theta_temp,phi_temp)
 325 brash 1.8  
 326 brash 1.19 c          write(*,*)'Raw Variables'
 327            c          write(*,*)xahch2,yahch2,zahch2
 328            c          write(*,*)xbhch2,ybhch2,zbhch2
 329            c          write(*,*)x1a,y1a,z1a
 330            c          write(*,*)x2b,y2b,z2b
 331            
 332                      tphif=(xbhch2-xahch2)/(zbhch2-zahch2) 
 333                      tthetaf=(ybhch2-yahch2)/(zbhch2-zahch2) 
 334                      tphir=(x2b-x1a)/(z2b-z1a) 
 335                      tthetar=(y2b-y1a)/(z2b-z1a)
 336                      zmid=(z1a+zbhch2)/2.0+45.0
 337                      x0f=xbhch2+(zmid-zbhch2)*tphif
 338                      y0f=ybhch2+(zmid-zbhch2)*tthetaf
 339                      x0r=x1a+(zmid-z1a)*tphir
 340                      y0r=y1a+(zmid-z1a)*tthetar
 341            
 342            c          write(*,*)'Front Scattering:'
 343            c          write(*,*)x0f,y0f,tphif,tthetaf
 344            c          write(*,*)x0r,y0r,tphir,tthetar
 345            
 346                      call calc_zclose_sclose(x0f,y0f,tphif,tthetaf,
 347 brash 1.19      &            x0r,y0r,tphir,tthetar,zclose_temp,sclose_temp)
 348                      zclose_temp=zclose_temp+zmid
 349            c          write(*,*)'zclose = ',zclose_temp
 350            c          write(*,*)'sclose = ',sclose_temp
 351            
 352 brash 1.17 c	    write(*,*)'Old scattering angle = ',theta_front
 353            c	    write(*,*)'New scattering angle = ',theta_temp
 354            c	    write(*,*)'**************************'
 355                        if(theta_temp.lt.theta_front)then
 356            		theta_front=theta_temp
 357            		phi_front=phi_temp
 358 brash 1.19                 zclose_front=zclose_temp
 359                            sclose_front=sclose_temp
 360 brash 1.17 	    endif
 361            
 362            c            write(*,*)'Hit in second chamber ...'
 363            c            write(*,*)'Number of hits: ',nhu2,nhx2,nhv2
 364 brash 1.6  
 365                     endif
 366            c
 367                     if ( istop.ne.0 ) then
 368                        make_hist=0
 369                     endif
 370                  else if ( names(nlevel).eq."fch3" ) then
 371                     if(inwvol.eq.1) then
 372                       x3a=vect(1)
 373                       y3a=vect(2)
 374                       z3a=vect(3)
 375                     endif
 376 brash 1.16          if(inwvol.eq.2.and.(ipart.eq.8.or.ipart.eq.9
 377                 &      .or.ipart.eq.14)) then
 378 brash 1.6              x3b=vect(1)
 379                        y3b=vect(2)
 380                        z3b=vect(3)
 381            
 382 brash 1.13             call get_wire_numbers(x3a,y3a,z3a,x3b,y3b,z3b,nhu,nhx,nhv,
 383 brash 1.12      &           n3ua,n3xa,n3va,n3ub,n3xb,n3vb)
 384 brash 1.11 
 385 brash 1.16             nhu3=nhu3+1
 386                        nhx3=nhx3+1
 387                        nhv3=nhv3+1
 388 brash 1.13 
 389                        if(nhu.eq.1.and.nhv.eq.1.and.nhx.eq.1) then
 390 brash 1.12                call get_drift_distance_ejb(x3a,y3a,z3a,x3b,y3b,z3b,
 391 brash 1.14      &              n3ua,n3xa,n3va,d3ue,d3xe,d3ve,idflag)
 392 brash 1.16 c               call get_drift_distance(x3a,y3a,z3a,x3b,y3b,z3b,
 393            c     &              n3ua,n3xa,n3va,d3u,d3x,d3v)
 394 brash 1.12             else
 395                           call get_drift_distance_ejb(x3a,y3a,z3a,x3b,y3b,z3b,
 396 brash 1.14      &              n3ua,n3xa,n3va,d3ue,d3xe,d3ve,idflag)
 397            c               write(*,*)'Drift Distance 3a: ',d3ue,d3xe,d3ve
 398 brash 1.12                call get_drift_distance_ejb(x3a,y3a,z3a,x3b,y3b,z3b,
 399 brash 1.14      &              n3ub,n3xb,n3vb,d3ue,d3xe,d3ve,idflag)
 400            c               write(*,*)'Drift Distance 3b: ',d3ue,d3xe,d3ve
 401 brash 1.16 c               call get_drift_distance(x3a,y3a,z3a,x3b,y3b,z3b,
 402            c     &              n3ua,n3xa,n3va,d3u,d3x,d3v)
 403 brash 1.14 c               write(*,*)'Drift Distance 3c: ',d3u,d3x,d3v
 404 brash 1.12             endif
 405                      
 406 brash 1.8  
 407 brash 1.17 c            write(*,*)'Hit in third chamber ...'
 408            c            write(*,*)'Number of Hits: ',nhu3,nhx3,nhv3
 409 brash 1.6  
 410                     endif
 411            c
 412                     if ( istop.ne.0 ) then
 413                        make_hist=0
 414                     endif     
 415                  else if ( names(nlevel).eq."fch4" ) then
 416                     if(inwvol.eq.1) then
 417                       x4a=vect(1)
 418                       y4a=vect(2)
 419                       z4a=vect(3)
 420                     endif
 421 brash 1.16          if(inwvol.eq.2.and.(ipart.eq.8.or.ipart.eq.9
 422                 &      .or.ipart.eq.14)) then
 423 brash 1.6              x4b=vect(1)
 424                        y4b=vect(2)
 425                        z4b=vect(3)
 426            
 427 brash 1.13             call get_wire_numbers(x4a,y4a,z4a,x4b,y4b,z4b,nhu,nhx,nhv,
 428 brash 1.12      &           n4ua,n4xa,n4va,n4ub,n4xb,n4vb)
 429 brash 1.11 
 430 brash 1.16             nhu4=nhu4+1
 431                        nhx4=nhx4+1
 432                        nhv4=nhv4+1
 433 brash 1.13 
 434                        if(nhu.eq.1.and.nhv.eq.1.and.nhx.eq.1) then
 435 brash 1.12                call get_drift_distance_ejb(x4a,y4a,z4a,x4b,y4b,z4b,
 436 brash 1.14      &              n4ua,n4xa,n4va,d4ue,d4xe,d4ve,idflag)
 437 brash 1.16 c               call get_drift_distance(x4a,y4a,z4a,x4b,y4b,z4b,
 438            c     &              n4ua,n4xa,n4va,d4u,d4x,d4v)
 439 brash 1.12             else
 440                           call get_drift_distance_ejb(x4a,y4a,z4a,x4b,y4b,z4b,
 441 brash 1.14      &              n4ua,n4xa,n4va,d4ue,d4xe,d4ve,idflag)
 442            c               write(*,*)'Drift Distance 4a: ',d4ue,d4xe,d4ve
 443 brash 1.12                call get_drift_distance_ejb(x4a,y4a,z4a,x4b,y4b,z4b,
 444 brash 1.14      &              n4ub,n4xb,n4vb,d4ue,d4xe,d4ve,idflag)
 445            c               write(*,*)'Drift Distance 4b: ',d4ue,d4xe,d4ve
 446 brash 1.16 c               call get_drift_distance(x4a,y4a,z4a,x4b,y4b,z4b,
 447            c     &              n4ua,n4xa,n4va,d4u,d4x,d4v)
 448 brash 1.14 c               write(*,*)'Drift Distance 4c: ',d4u,d4x,d4v
 449 brash 1.12             endif
 450                      
 451 brash 1.18            call calc_theta_phi(x1a,y1a,z1a,x2b,y2b,z2b,
 452                 &           x3a,y3a,z3a,x4b,y4b,z4b,
 453                 &            theta_temp,phi_temp)
 454            
 455 brash 1.19 c          write(*,*)'Raw Variables'
 456            c          write(*,*)x1a,y1a,z1a
 457            c          write(*,*)x2b,y2b,z2b
 458            c          write(*,*)x3a,y3a,z3a
 459            c          write(*,*)x4b,y4b,z4b
 460            
 461                      tphif=(x2b-x1a)/(z2b-z1a) 
 462                      tthetaf=(y2b-y1a)/(z2b-z1a) 
 463                      tphir=(x4b-x3a)/(z4b-z3a) 
 464                      tthetar=(y4b-y3a)/(z4b-z3a)
 465                      zmid=(z3a+z2b)/2.0
 466                      x0f=x2b+(zmid-z2b)*tphif
 467                      y0f=y2b+(zmid-z2b)*tthetaf
 468                      x0r=x3a+(zmid-z3a)*tphir
 469                      y0r=y3a+(zmid-z3a)*tthetar
 470            
 471            c          write(*,*)'Rear Scattering:'
 472            c          write(*,*)x0f,y0f,tphif,tthetaf
 473            c          write(*,*)x0r,y0r,tphir,tthetar
 474            
 475                      call calc_zclose_sclose(x0f,y0f,tphif,tthetaf,
 476 brash 1.19      &            x0r,y0r,tphir,tthetar,zclose_temp,sclose_temp)
 477                      zclose_temp=zclose_temp+zmid
 478            c          write(*,*)'zclose = ',zclose_temp
 479            c          write(*,*)'sclose = ',sclose_temp
 480            
 481            c	    write(*,*)'Old scattering angle = ',theta_rear
 482            c	    write(*,*)'New scattering angle = ',theta_temp
 483            c	    write(*,*)'**************************'
 484 brash 1.18             if(theta_temp.lt.theta_rear)then
 485            		theta_rear=theta_temp
 486            		phi_rear=phi_temp
 487 brash 1.19 		zclose_rear=zclose_temp
 488            		sclose_rear=sclose_temp
 489 brash 1.18 	    endif
 490            
 491 brash 1.8  
 492 brash 1.17 c            write(*,*)'Hit in fourth chamber ...'
 493            c            write(*,*)'Wire Numbers: ',nhu4,nhx4,nhv4
 494 brash 1.16 c            write(*,*)'Particle ID: ',ipart
 495 brash 1.6  
 496                     endif
 497            c
 498 brash 1.4           if ( istop.ne.0 ) then
 499                        make_hist=0
 500                     endif
 501 brash 1.2        else if ( istop.ne.0.and. names(nlevel).eq."sci1" ) then
 502                     make_hist=0
 503                  else if ( names(nlevel).eq."anl1" ) then
 504 jones 1.1           if(inwvol.eq.1) then
 505 brash 1.5  c           write(6,*)'We have a hit in the fist analyzer at'
 506            c           write(6,*)'x=',vect(1),' y=',vect(2),' z=',vect(3)
 507 brash 1.4             xdet=vect(1)
 508                       ydet=vect(2)
 509                       zdet=vect(3)
 510 jones 1.1           endif
 511                     if ( istop.ne.0 ) then
 512                        make_hist=0
 513                     endif
 514                  end if
 515            c     
 516            c     
 517            c     store current track parameters (including position ) in jxyz structure.
 518            c     
 519                  call gsxyz
 520            c     
 521            c     moved histograming stuff to gulast
 522            c     
 523            c     write(6,*)'done in gustep'
 524             9999 return
 525 brash 1.6        end
 526            
 527 brash 1.13       subroutine get_wire_numbers(xa,ya,za,xb,yb,zb,nhu,nhx,nhv,
 528 brash 1.12      %     nu1,nx1,nv1,nu2,nx2,nv2)
 529 brash 1.6  
 530 brash 1.7        implicit none
 531            
 532 brash 1.6        real*8 xa,ya,za,xb,yb,zb
 533 brash 1.12       integer*4 nu1,nx1,nv1
 534                  integer*4 nu2,nx2,nv2
 535 brash 1.13       integer*4 nhu,nhx,nhv
 536 brash 1.6  
 537                  real*8 zc,zu,zx,zv,zt,xp,yp,xu,xx,xv,yu,yx,yv,uw,xw,vw
 538 brash 1.7        real*8 anu,anx,anv
 539 brash 1.6  
 540 brash 1.12       nu2=0
 541                  nx2=0
 542                  nv2=0
 543            c
 544 brash 1.6  c We have the (x,y,z) coordinates of the entrance (a) and exit (b) points
 545            c of the track.  We can use this information to calculate the wire numbers that
 546            c were hit in each plane.
 547            c
 548                  zc=(zb-za)/2.0+za
 549                  zu=zc-1.60
 550                  zx=zc
 551                  zv=zc+1.60
 552                  zt=(zb-za)
 553                  xp=(xb-xa)/zt
 554                  yp=(yb-ya)/zt
 555 brash 1.12 c
 556 brash 1.14 c Project to the FRONT of the "cell" associated with each plane.
 557            c
 558                  xu=xa+xp*(zu-za-0.8)
 559                  yu=ya+yp*(zu-za-0.8)
 560                  xx=xa+xp*(zx-za-0.8)
 561                  yx=ya+yp*(zx-za-0.8)
 562                  xv=xa+xp*(zv-za-0.8)
 563                  yv=ya+yp*(zv-za-0.8)      
 564            c
 565            c      xu=xa
 566            c      yu=ya
 567            c      xx=xa
 568            c      yx=ya
 569            c      xv=xa
 570            c      yv=ya
 571 brash 1.6  c
 572                  uw=(xu+yu)/sqrt(2.0)
 573                  xw=xx
 574                  vw=(-xv+yv)/sqrt(2.0)
 575 brash 1.7  c
 576 brash 1.8  c      write(*,*)'********************'
 577 brash 1.10 c      write(*,*)'A: ',xa,ya,za
 578            c      write(*,*)'B: ',xb,yb,zb
 579            c      write(*,*)'U: ',xu,yu,zu
 580            c      write(*,*)'X: ',xx,yx,zx
 581            c      write(*,*)'V: ',xv,yv,zv
 582            c      write(*,*)'W: ',uw,xw,vw
 583 brash 1.14 c      write(*,*)'********************'
 584 brash 1.7  c     
 585                  anu=(-uw-3.592+104.0)/2.0
 586                  anx=(-xw-5.080+84.0)/2.0
 587                  anv=(vw-3.592+104.0)/2.0
 588            c
 589 brash 1.10 c      write(*,*)'Wires: ',anu,anx,anv
 590            c      write(*,*)'********************'
 591 brash 1.12       nu1=anu
 592                  nv1=anv
 593                  nx1=anx
 594                  if((anu-nu1).ge.0.500)nu1=nu1+1
 595                  if((anx-nx1).ge.0.500)nx1=nx1+1
 596                  if((anv-nv1).ge.0.500)nv1=nv1+1
 597            c      write(*,*)'using front of chamber: ',nu1,nx1,nv1
 598            c
 599 brash 1.14 c Now project to the BACK of the "cell" associated with each plane.
 600 brash 1.12 c
 601 brash 1.14       xu=xa+xp*(zu-za+0.8)
 602                  yu=ya+yp*(zu-za+0.8)
 603                  xx=xa+xp*(zx-za+0.8)
 604                  yx=ya+yp*(zx-za+0.8)
 605                  xv=xa+xp*(zv-za+0.8)
 606                  yv=ya+yp*(zv-za+0.8)      
 607            c
 608            c      xu=xb
 609            c      yu=yb
 610            c      xx=xb
 611            c      yx=yb
 612            c      xv=xb
 613            c      yv=yb
 614 brash 1.12 c
 615                  uw=(xu+yu)/sqrt(2.0)
 616                  xw=xx
 617                  vw=(-xv+yv)/sqrt(2.0)
 618 brash 1.7  c
 619 brash 1.12 c      write(*,*)'********************'
 620            c      write(*,*)'A: ',xa,ya,za
 621            c      write(*,*)'B: ',xb,yb,zb
 622            c      write(*,*)'U: ',xu,yu,zu
 623            c      write(*,*)'X: ',xx,yx,zx
 624            c      write(*,*)'V: ',xv,yv,zv
 625 brash 1.10 c      write(*,*)'W: ',uw,xw,vw
 626            c      write(*,*)'********************'
 627 brash 1.12 c     
 628                  anu=(-uw-3.592+104.0)/2.0
 629                  anx=(-xw-5.080+84.0)/2.0
 630                  anv=(vw-3.592+104.0)/2.0
 631            c
 632            c      write(*,*)'Wires: ',anu,anx,anv
 633            c      write(*,*)'********************'
 634                  nu2=anu
 635                  nv2=anv
 636                  nx2=anx
 637                  if((anu-nu2).ge.0.500)nu2=nu2+1
 638                  if((anx-nx2).ge.0.500)nx2=nx2+1
 639                  if((anv-nv2).ge.0.500)nv2=nv2+1
 640 brash 1.13       nhu=1
 641                  nhx=1
 642                  nhv=1
 643                  if(nu1.ne.nu2)nhu=2
 644                  if(nx1.ne.nx2)nhx=2
 645                  if(nv1.ne.nv2)nhv=2
 646 brash 1.7  
 647 brash 1.12       return
 648                  end
 649 brash 1.8  
 650 brash 1.12 c      subroutine get_drift_distance_ejb(xa,ya,za,xb,yb,zb,
 651            c     &           nu,nx,nv,du,dx,dv)
 652            c
 653            c      implicit none
 654            c
 655            c      real*8 xa,ya,za,xb,yb,zb,du,dx,dv
 656            c      integer*4 nu,nx,nv
 657            c      real*8 tphi,ttheta
 658            c      real*8 uw,xw,vw
 659            c      real*8 c11,c12,c21,c22,d1,d2,a,zt,xt,yt
 660            c      real*8 xu,yu,zu
 661            c      real*8 xv,yv,zv
 662            c      real*8 xx,yx,zx
 663            c
 664            c      tphi=(xb-xa)/(zb-za)
 665            c      ttheta=(yb-ya)/(zb-za)
 666            c
 667            c      uw=-2.0*nu-3.592+104.0
 668            c      xw=-2.0*nx-5.080+84.0
 669            c      vw=2.0*nv+3.592-104.0
 670            c      zu=(zb+za)/2.0-1.60
 671 brash 1.12 c      zv=(zb+za)/2.0+1.60
 672            c      zx=(zb+za)/2.0
 673            c
 674            cc      write(*,*)'W: ',uw,xw,vw
 675            cc      write(*,*)'********************'
 676            c
 677            c      c11=tphi-ttheta
 678            c      c12=sqrt(2.0)
 679            c      d1=-xa+ya
 680            c      c21=tphi*tphi+ttheta*ttheta+1.0
 681            c      c22=-ttheta/sqrt(2.0)+tphi/sqrt(2.0)
 682            c      d2=uw*(ttheta+tphi)/sqrt(2.0)-xa*tphi-ya*ttheta+zu-za
 683            c
 684            c      a=(d1*c21-d2*c11)/(c21*c12-c22*c11)
 685            c      zt=(d1-c12*a)/c11
 686            cc      write(*,*)'U Plane zt,a: ',zt,a
 687            c
 688            c      xt=xa+zt*tphi
 689            c      yt=ya+zt*ttheta
 690            c      xu=(uw-a)/sqrt(2.0)
 691            c      yu=(uw+a)/sqrt(2.0)
 692 brash 1.12 c
 693            c      zt=zt+za
 694            c
 695            c      du=sqrt((xt-xu)**2+(yt-yu)**2+(zt-zu)**2)      
 696            c       
 697            c      c11=tphi+ttheta
 698            c      c12=-sqrt(2.0)
 699            c      d1=-xa-ya
 700            c      c21=tphi*tphi+ttheta*ttheta+1.0
 701            c      c22=-ttheta/sqrt(2.0)-tphi/sqrt(2.0)
 702            c      d2=vw*(ttheta+tphi)/sqrt(2.0)-xa*tphi-ya*ttheta+zv-za
 703            c
 704            c      a=(d1*c21-d2*c11)/(c21*c12-c22*c11)
 705            c      zt=(d1-c12*a)/c11
 706            cc      write(*,*)'V Plane zt,a: ',zt,a
 707            c
 708            c      xt=xa+zt*tphi
 709            c      yt=ya+zt*ttheta
 710            c      xv=-(vw-a)/sqrt(2.0)
 711            c      yv=(vw+a)/sqrt(2.0)
 712            c
 713 brash 1.12 c      zt=zt+za
 714            c      
 715            c      dv=sqrt((xt-xv)**2+(yt-yv)**2+(zt-zv)**2)
 716            c     
 717            c      c11=tphi
 718            c      c12=-1.0
 719            c      d1=-ya
 720            c      c21=tphi*tphi+ttheta*ttheta+1.0
 721            c      c22=-ttheta
 722            c      d2=xw*tphi-xa*tphi-ya*ttheta+zx-za
 723            c
 724            c      a=(d1*c21-d2*c11)/(c21*c12-c22*c11)
 725            c      zt=(d1-c12*a)/c11
 726            cc      write(*,*)'X Plane zt,a: ',zt,a
 727            c
 728            c      xt=xa+zt*tphi
 729            c      yt=ya+zt*ttheta
 730            c      xx=xw
 731            c      yx=a
 732            c
 733            c      zt=zt+za
 734 brash 1.12 c      
 735            c      dx=sqrt((xt-xx)**2+(yt-yx)**2+(zt-zx)**2)
 736            c
 737            cc      if((du.gt.1.00)) then
 738 brash 1.11 c         write(*,*)'Calculating Drift Distance ...'
 739            c         write(*,*)'A: ',xa,ya,za
 740            c         write(*,*)'B: ',xb,yb,zb
 741 brash 1.12 cc         write(*,*)'U: ',xu,yu,zu
 742            cc         write(*,*)'V: ',xv,yv,zv
 743            cc         write(*,*)'X: ',xx,yx,zx
 744 brash 1.11 c         write(*,*)'U Drift distance = ',du
 745            c         write(*,*)'V Drift distance = ',dv
 746            c         write(*,*)'X Drift distance = ',dx
 747 brash 1.12 cc      endif
 748            c
 749            c      return
 750            c      end
 751 brash 1.11 
 752            
 753                  subroutine get_drift_distance(xa,ya,za,xb,yb,zb,
 754                 &           nu,nx,nv,distu,distx,distv)
 755            c
 756            c     This subroutine uses the entrance (a) and exit (b)
 757            c     points of a chamber to define the line of the track.
 758            c     It uses the wire number and wire direction to define
 759            c     the wire line.  It then uses these to build parallel
 760            c     planes by computing a normal vector to both of the lines.
 761            c     Finally, it calculates the distance between these two
 762            c     planes which is the distance of shortest approach.
 763            c      
 764                  implicit none
 765            c
 766                  real*8 xa,ya,za,xb,yb,zb
 767                  real*8 distu,distx,distv,xp,yp,zc
 768                  integer*4 nu,nx,nv
 769                  real*8 uw,xw,vw
 770                  real*8 zt,xt,yt
 771                  real*8 xu,yu,zu
 772 brash 1.11       real*8 xv,yv,zv
 773                  real*8 xx,yx,zx
 774            c
 775            c     the direction of each of the lines
 776            c     vect1=track   vectu=u wire
 777 brash 1.14       real*8 vect1(1:3), vectu(1:3)
 778                  real*8 vectx(1:3), vectv(1:3)
 779 brash 1.11 c   
 780            c     the normal vector to both lines
 781 brash 1.14       real*8 normu(1:3)
 782                  real*8 normx(1:3)
 783                  real*8 normv(1:3)
 784 brash 1.11 c
 785            c     the coefficients of the plane
 786 brash 1.14       real*8 pvectu(1:4)
 787                  real*8 pvectx(1:4)
 788                  real*8 pvectv(1:4)
 789 brash 1.11 c
 790                  vect1(1)=xb-xa
 791                  vect1(2)=yb-ya
 792                  vect1(3)=zb-za
 793            c
 794                  zu=(zb+za)/2.0-1.60
 795                  zv=(zb+za)/2.0+1.60
 796                  zx=(zb+za)/2.0
 797            c
 798            c     use line number to calculate distance relative to
 799            c     wire plane, then convert to x and y
 800            c      write(*,*)'nu nx nv',nu,nx,nv
 801                  uw=-2.0*nu-3.592+104.0
 802                  xw=-2.0*nx-5.080+84.0
 803                  vw=2.0*nv+3.592-104.0
 804                  xu=uw/sqrt(2.0)
 805                  yu=uw/sqrt(2.0)      
 806                  xx=xw
 807                  yx=0
 808                  xv=-vw/sqrt(2.0)
 809                  yv=vw/sqrt(2.0)
 810 brash 1.12 c      write(*,*)'uw xu yu zu',uw,xu,yu,zu
 811 brash 1.11 c      write(*,*)'xw xx yx zx',xw,xx,yx,zx
 812            c      write(*,*)'vw xv yv zv',vw,xv,yv,zv
 813            c
 814            c     define direction vector for wires, will be the same
 815            c     for each wire in a given plane, and is known
 816            c     for each plane
 817                  vectu(1)=1.0/sqrt(2.0)
 818                  vectu(2)=1.0/sqrt(2.0)
 819                  vectu(3)=0.0
 820                  vectx(1)=0.0
 821                  vectx(2)=1.0
 822                  vectx(3)=0.0
 823                  vectv(1)=-1.0/sqrt(2.0)
 824                  vectv(2)=1.0/sqrt(2.0)
 825                  vectv(3)=0.0
 826            c
 827 brash 1.12 c      write(*,*)'distance calculations .....'
 828            c      write(*,*)xa,ya,za
 829            c      write(*,*)vect1(1),vect1(2),vect1(3)
 830            c      write(*,*)xu,yu,zu
 831            c      write(*,*)vectu(1),vectu(2),vectu(3)
 832            c      write(*,*)xx,yx,zx
 833            c      write(*,*)vectx(1),vectx(2),vectx(3)
 834            c      write(*,*)xv,yv,zv
 835            c      write(*,*)vectv(1),vectv(2),vectv(3)
 836            c      write(*,*)'distance calculations .....'
 837            c
 838 brash 1.11 c     cross product
 839                  normu(1)=vect1(2)*vectu(3)-vect1(3)*vectu(2)
 840                  normu(2)=vect1(1)*vectu(3)-vect1(3)*vectu(1)
 841                  normu(3)=vect1(1)*vectu(2)-vect1(2)*vectu(1)
 842                  normx(1)=vect1(2)*vectx(3)-vect1(3)*vectx(2)
 843                  normx(2)=vect1(1)*vectx(3)-vect1(3)*vectx(1)
 844                  normx(3)=vect1(1)*vectx(2)-vect1(2)*vectx(1)
 845                  normv(1)=vect1(2)*vectv(3)-vect1(3)*vectv(2)
 846                  normv(2)=vect1(1)*vectv(3)-vect1(3)*vectv(1)
 847                  normv(3)=vect1(1)*vectv(2)-vect1(2)*vectv(1)
 848            c      
 849                  pvectu(1)=normu(1)
 850                  pvectu(2)=normu(2)
 851                  pvectu(3)=normu(3)
 852                  pvectu(4)=normu(1)*(-xu)+normu(2)*(-yu)+normu(3)*(-zu)
 853                  pvectx(1)=normx(1)
 854                  pvectx(2)=normx(2)
 855                  pvectx(3)=normx(3)
 856                  pvectx(4)=normx(1)*(-xx)+normx(2)*(-yx)+normx(3)*(-zx)
 857                  pvectv(1)=normv(1)
 858                  pvectv(2)=normv(2)
 859 brash 1.11       pvectv(3)=normv(3)
 860                  pvectv(4)=normv(1)*(-xv)+normv(2)*(-yv)+normv(3)*(-zv)
 861            c
 862            c     distance formula
 863                  distu=(pvectu(1)*xa+pvectu(2)*ya+pvectu(3)*za+pvectu(4))
 864                 &     /sqrt(normu(1)**2+normu(2)**2+normu(3)**2)
 865                  distx=(pvectx(1)*xa+pvectx(2)*ya+pvectx(3)*za+pvectx(4))
 866                 &     /sqrt(normx(1)**2+normx(2)**2+normx(3)**2)
 867                  distv=(pvectv(1)*xa+pvectv(2)*ya+pvectv(3)*za+pvectv(4))
 868                 &     /sqrt(normv(1)**2+normv(2)**2+normv(3)**2)
 869            c      write(*,*)'Drift distance: ',distu, distx, distv
 870 brash 1.14 c     
 871            c        write(*,*)'Brads routine ....' 
 872            c        write(*,*)xa,ya,za
 873            c        write(*,*)xb,yb,zb
 874            c        write(*,*)nu,nx,nv
 875            c   	write(*,*)uw,xw,vw
 876            c        write(*,*)'Drift distance: ',distu, distx, distv
 877                  
 878 brash 1.11       return
 879                  end
 880            
 881 brash 1.12       subroutine get_drift_distance_ejb(xa,ya,za,xb,yb,zb,
 882 brash 1.14      &           nu,nx,nv,distu,distx,distv,idflag)
 883 brash 1.12 c
 884            c Author: Ed Brash - December 15th, 2005
 885            c Yet another attempt at a full drift distance calculation
 886            c
 887                  implicit none
 888            c
 889                  real*8 xa,ya,za,xb,yb,zb
 890                  real*8 distu,distx,distv,xp,yp,zc
 891                  integer*4 nu,nx,nv
 892                  real*8 uw,xw,vw
 893                  real*8 zt,xt,yt
 894                  real*8 xu,yu,zu
 895                  real*8 xv,yv,zv
 896                  real*8 xx,yx,zx
 897 brash 1.14       logical idflag
 898 brash 1.12 c
 899            c     the direction of each of the lines
 900            c     vect1=track   vectu=u wire
 901                  real*8 vect1(1:3), vectu(1:3)
 902                  real*8 vectx(1:3), vectv(1:3)
 903            
 904            c     the difference vector between the defining points
 905                  real*8 du(1:3),dx(1:3),dv(1:3)
 906            c   
 907            c     the normal vector to both lines
 908                  real*8 normu(1:3)
 909                  real*8 normx(1:3)
 910                  real*8 normv(1:3)
 911                  real*8 normumag,normxmag,normvmag
 912            c
 913            c     the coefficients of the distance vector
 914                  real*8 dvectu(1:4)
 915                  real*8 dvectx(1:4)
 916                  real*8 dvectv(1:4)
 917            c
 918 brash 1.14       idflag=.false.
 919 brash 1.12       vect1(1)=xb-xa
 920                  vect1(2)=yb-ya
 921                  vect1(3)=zb-za
 922            c
 923                  zu=(zb+za)/2.0-1.60
 924                  zv=(zb+za)/2.0+1.60
 925                  zx=(zb+za)/2.0
 926            c
 927            c     use line number to calculate distance relative to
 928            c     wire plane, then convert to x and y
 929            c      write(*,*)'nu nx nv',nu,nx,nv
 930                  uw=-2.0*nu-3.592+104.0
 931                  xw=-2.0*nx-5.080+84.0
 932                  vw=2.0*nv+3.592-104.0
 933                  xu=uw/sqrt(2.0)
 934                  yu=uw/sqrt(2.0)      
 935                  xx=xw
 936                  yx=0
 937                  xv=-vw/sqrt(2.0)
 938                  yv=vw/sqrt(2.0)
 939            c      write(*,*)'uw xu yu zu',uw,xu,yu,zu
 940 brash 1.12 c      write(*,*)'xw xx yx zx',xw,xx,yx,zx
 941            c      write(*,*)'vw xv yv zv',vw,xv,yv,zv
 942            c
 943            c     define direction vector for wires, will be the same
 944            c     for each wire in a given plane, and is known
 945            c     for each plane
 946                  vectu(1)=1.0/sqrt(2.0)
 947                  vectu(2)=-1.0/sqrt(2.0)
 948                  vectu(3)=0.0
 949                  vectx(1)=0.0
 950                  vectx(2)=1.0
 951                  vectx(3)=0.0
 952                  vectv(1)=1.0/sqrt(2.0)
 953                  vectv(2)=1.0/sqrt(2.0)
 954                  vectv(3)=0.0
 955            c
 956            c      write(*,*)'distance calculations .....'
 957            c      write(*,*)xa,ya,za
 958            c      write(*,*)vect1(1),vect1(2),vect1(3)
 959            c      write(*,*)xu,yu,zu
 960            c      write(*,*)vectu(1),vectu(2),vectu(3)
 961 brash 1.12 c      write(*,*)xx,yx,zx
 962            c      write(*,*)vectx(1),vectx(2),vectx(3)
 963            c      write(*,*)xv,yv,zv
 964            c      write(*,*)vectv(1),vectv(2),vectv(3)
 965            c      write(*,*)'distance calculations .....'
 966            c
 967            c     cross product
 968                  normu(1)=vect1(2)*vectu(3)-vect1(3)*vectu(2)
 969                  normu(2)=vect1(3)*vectu(1)-vect1(1)*vectu(3)
 970                  normu(3)=vect1(1)*vectu(2)-vect1(2)*vectu(1)
 971                  normx(1)=vect1(2)*vectx(3)-vect1(3)*vectx(2)
 972                  normx(2)=vect1(3)*vectx(1)-vect1(1)*vectx(3)
 973                  normx(3)=vect1(1)*vectx(2)-vect1(2)*vectx(1)
 974                  normv(1)=vect1(2)*vectv(3)-vect1(3)*vectv(2)
 975                  normv(2)=vect1(3)*vectv(1)-vect1(1)*vectv(3)
 976                  normv(3)=vect1(1)*vectv(2)-vect1(2)*vectv(1)
 977            c      write(*,*)normu(1),normu(2),normu(3)
 978            c
 979                  normumag=sqrt(normu(1)**2+normu(2)**2+normu(3)**2)
 980                  normxmag=sqrt(normx(1)**2+normx(2)**2+normx(3)**2)
 981                  normvmag=sqrt(normv(1)**2+normv(2)**2+normv(3)**2)
 982 brash 1.12       normu(1)=normu(1)/normumag
 983                  normu(2)=normu(2)/normumag
 984                  normu(3)=normu(3)/normumag
 985 brash 1.14       normx(1)=normx(1)/normxmag
 986                  normx(2)=normx(2)/normxmag
 987                  normx(3)=normx(3)/normxmag
 988                  normv(1)=normv(1)/normvmag
 989                  normv(2)=normv(2)/normvmag
 990                  normv(3)=normv(3)/normvmag
 991 brash 1.12 c      write(*,*)normumag
 992            c
 993                  du(1)=xa-xu
 994                  du(2)=ya-yu
 995                  du(3)=za-zu      
 996                  dx(1)=xa-xx
 997                  dx(2)=ya-yx
 998                  dx(3)=za-zx      
 999                  dv(1)=xa-xv
1000                  dv(2)=ya-yv
1001                  dv(3)=za-zv
1002            c
1003            c
1004            c     distance formula
1005                  distu=du(1)*normu(1)+du(2)*normu(2)+du(3)*normu(3)     
1006                  distx=dx(1)*normx(1)+dx(2)*normx(2)+dx(3)*normx(3)     
1007                  distv=dv(1)*normv(1)+dv(2)*normv(2)+dv(3)*normv(3)     
1008            c
1009 brash 1.14       if(distu.gt.1.0.or.distx.gt.1.0.or.distv.gt.1.0)
1010                 &            idflag=.true. 
1011                  if(distu.gt.1.28.or.distx.gt.1.28.or.distv.gt.1.28)then
1012                    write(*,*)'Problem Child !!!'
1013                    write(*,*)'distance calculations .....'
1014                    write(*,*)xa,ya,za
1015            c        write(*,*)vect1(1),vect1(2),vect1(3)
1016                    write(*,*)xu,yu,zu
1017            c        write(*,*)vectu(1),vectu(2),vectu(3)
1018                    write(*,*)xx,yx,zx
1019            c        write(*,*)vectx(1),vectx(2),vectx(3)
1020                    write(*,*)xv,yv,zv
1021            c        write(*,*)vectv(1),vectv(2),vectv(3)
1022 brash 1.19 c        write(*,*)'normalization factors'
1023            c        write(*,*)normu(1),normu(2),normu(3)
1024            c        write(*,*)normumag
1025            c        write(*,*)normx(1),normx(2),normx(3)
1026            c        write(*,*)normxmag
1027            c        write(*,*)normv(1),normv(2),normv(3)
1028            c        write(*,*)normvmag
1029            c        write(*,*)'Drift distance: ',distu, distx, distv
1030 brash 1.14       endif
1031 brash 1.12 c      
1032                  return
1033                  end
1034            
1035 brash 1.11 
1036                  subroutine calc_theta_phi(xin1,yin1,zin1,xin2,yin2,zin2,
1037                 &     xsc1,ysc1,zsc1,xsc2,ysc2,zsc2,theta,phi)
1038            c
1039                  implicit none
1040 brash 1.12       include 'fpp_local.h'
1041                  include 'geant_local.h'
1042 brash 1.11 c
1043                  real*8 xin1,yin1,zin1,xin2,yin2,zin2
1044                  real*8 xsc1,ysc1,zsc1,xsc2,ysc2,zsc2,theta,phi
1045                  real*8 ftheta, fphi, fpsi
1046 brash 1.12       real*8 lin,lout,theta_ejb,phi_ejb
1047 brash 1.11 c
1048                  real invect(1:3)
1049                  real scvect(1:3)
1050                  real scvect2(1:3)
1051 brash 1.12       real in(1:3)
1052                  real out(1:3)
1053                  real scat(1:3)
1054 brash 1.11 c
1055                  invect(1)=xin2-xin1
1056                  invect(2)=yin2-yin1
1057                  invect(3)=zin2-zin1
1058                  scvect(1)=xsc2-xsc1
1059                  scvect(2)=ysc2-ysc1
1060                  scvect(3)=zsc2-zsc1
1061 brash 1.12 c      write(*,*)'INCOMING: ',invect(1),invect(2),invect(3)
1062            c      write(*,*)'SCATTERED: ',scvect(1),scvect(2),scvect(3)
1063            c
1064            c EJB calculation of theta and phi
1065            c
1066                  in(1)=invect(1)/invect(3)
1067                  in(2)=invect(2)/invect(3)
1068                  in(3)=invect(3)/invect(3)
1069                  out(1)=scvect(1)/scvect(3)
1070                  out(2)=scvect(2)/scvect(3)
1071                  out(3)=scvect(3)/scvect(3)
1072                  lin=sqrt(in(1)**2+in(2)**2+in(3)**2)
1073                  lout=sqrt(out(1)**2+out(2)**2+out(3)**2)
1074                  scat(1)=out(1)-in(1)
1075                  scat(2)=out(2)-in(2)
1076                  scat(3)=out(3)
1077                  x_ejb=scat(1)
1078                  y_ejb=scat(2)
1079                  z_ejb=scat(3)
1080                  if(scat(1).ge.0.0.and.scat(2).gt.0.0)then
1081                     phi_ejb=atan(scat(1)/scat(2))*57.2957795
1082 brash 1.12       else if(scat(1).ge.0.0.and.scat(2).lt.0.0)then
1083                     phi_ejb=atan(scat(1)/scat(2))*57.2957795+180.00
1084                  else if(scat(1).le.0.0.and.scat(2).lt.0.0)then
1085                     phi_ejb=atan(scat(1)/scat(2))*57.2957795+180.00
1086                  else if(scat(1).le.0.0.and.scat(2).gt.0.0)then
1087                     phi_ejb=atan(scat(1)/scat(2))*57.2957795+360.00
1088                  endif
1089            c
1090                  theta_ejb=acos((in(1)*out(1)+in(2)*out(2)+in(3)*out(3))/
1091                 &     (lin*lout))*57.2957795
1092            c      write(*,*)'EJB Incoming Vector = ',in(1),in(2),in(3)
1093            c      write(*,*)'EJB Outgoing Vector = ',out(1),out(2),out(3)
1094            c      write(*,*)'EJB Scattered Vector = ',scat(1),scat(2),scat(3)
1095            c      write(*,*)'EJB Thetas = ',theta_ejb,phi_ejb
1096 brash 1.11 c
1097 brash 1.12 c end EJB calculation
1098            c      
1099            
1100            
1101 brash 1.11       ftheta=acos(invect(3)/sqrt(invect(1)**2+invect(3)**2))
1102                  fphi=acos(invect(3)/sqrt(invect(2)**2+invect(3)**2))
1103                  fpsi=acos(sqrt(invect(2)**2+invect(3)**2)/sqrt(invect(1)**2
1104                 &     +invect(2)**2+invect(3)**2))
1105            c
1106 brash 1.12 c      write(*,*)'ftheta, fphi, fpsi',
1107            c     &    ftheta*57.296,fphi*57.296,fpsi*57.296
1108 brash 1.11       scvect2(1)=scvect(1)*cos(fpsi)-sin(fpsi)*(scvect(2)*sin(fphi)
1109                 &     +scvect(3)*cos(fphi))
1110                  scvect2(2)=scvect(2)*cos(fphi)-scvect(3)*sin(fphi)
1111                  scvect2(3)=scvect(1)*sin(fpsi)+cos(fpsi)*(scvect(2)*sin(fphi)
1112                 &     +scvect(3)*cos(fphi))
1113            c
1114 brash 1.12 c      write(*,*)'SCATTERED 2: ',scvect2(1),scvect2(2),scvect2(3)
1115 brash 1.11       theta=atan(sqrt(scvect2(1)**2+scvect2(2)**2)/scvect2(3))*57.2957795
1116                  phi=atan(scvect2(1)/scvect2(2))*57.2957795
1117                  if (scvect2(1).lt.0.0.and.scvect2(2).gt.0.0) 
1118                 &  phi=phi+360.00
1119                  if (scvect2(1).lt.0.0.and.scvect2(2).lt.0.0) 
1120                 &  phi=phi+180.00
1121                  if (scvect2(1).gt.0.0.and.scvect2(2).lt.0.0) 
1122                 &  phi=phi+180.00
1123 brash 1.12 
1124            c      write(*,*)'Theta,phi =',theta,phi
1125 brash 1.15       theta=theta_ejb
1126                  phi=phi_ejb
1127 brash 1.11 c
1128                  return
1129                  end
1130            
1131 brash 1.19       subroutine calc_zclose_sclose(x0f,y0f,tphif,tthetaf,
1132                 &            x0r,y0r,tphir,tthetar,zclose,sclose)
1133            
1134                  real*8 x0f,y0f,tphif,tthetaf
1135                  real*8 x0r,y0r,tphir,tthetar
1136                  real*8 zclose,sclose
1137                  real*8 term1,term2,term3,term4,term5,term6
1138                  real*8 rbig
1139            
1140                  rbig=1.0e15
1141            
1142                  term1=(x0r-x0f)*(tphir-tphif)
1143                  term2=(y0r-y0f)*(tthetar-tthetaf)
1144                  term3=(tphir-tphif)**2
1145                  term4=(tthetar-tthetaf)**2
1146                  if((term3+term4).ne.0) then
1147                     zclose=-(term1+term2)/(term3+term4)
1148                  else
1149                     zclose=rbig
1150                  endif
1151                  term5=(x0r-x0f+(tphir-tphif)*zclose)
1152 brash 1.19       term6=(y0r-y0f+(tthetar-tthetaf)*zclose)
1153                  sclose=sqrt(term5**2+term6**2)
1154            
1155                  return
1156                  end
1157 brash 1.7  
1158                  
1159            
1160                  
1161            
1162                  
1163                  
1164                  
1165 jones 1.1        

Analyzer/Replay: Mark Jones, Documents: Stephen Wood
Powered by
ViewCVS 0.9.2-cvsgraph-1.4.0