A₁ⁿ Overview and Running Conditions

Xiaochao Zheng, University of Virginia (spokespeople: Gordon Cates, Jianping Chen, Zein-Eddine Meziani, Xiaochao Zheng

- 1. What are the running conditions for both experiments? Please state clearly the maximum current being used and the target dimensions.
- 2. What is the operational status/performance requirements of the equipmentneeded by the experiments. Precisely:
- a) 3He target Provide the targets configuration needed, performance requirements and status.

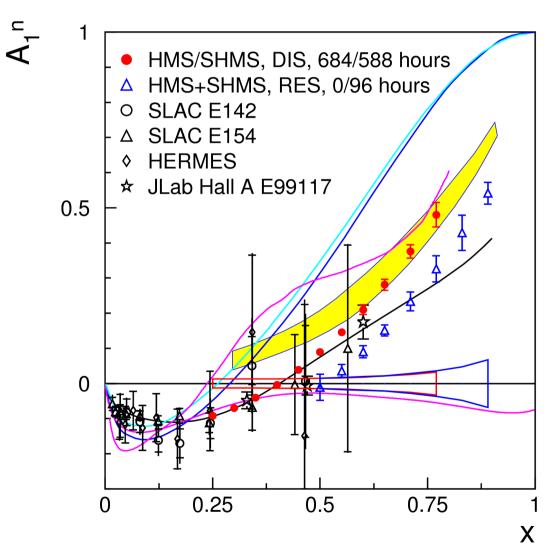
A₁ⁿ Experiment Overview

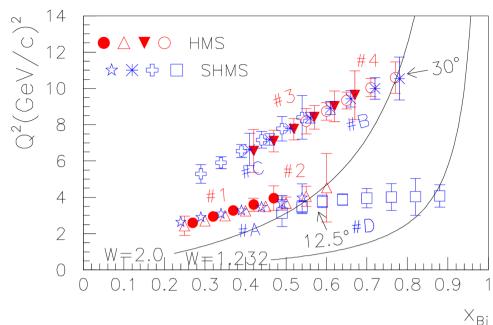
Xiaochao Zheng, University of Virginia (spokespeople: Gordon Cates, Jianping Chen, Zein-Eddine Meziani, Xiaochao Zheng

- First approved in 2006, re-approved in 2010 for 36 PAC days, rated A and with high impact;
- Will be the first time/experiment requiring the use of polarized beam in Hall C after the 12 GeV upgrade;
- Will be the first time/experiment using the polarized ³He target in Hall C, stage-I target upgrade performance expected: density 12 amg, 40cm long target cell, 30 uA beam current, (55-60)% in-beam polarization (mostly longitudinal, 3% NMR+EPR+pNMR polarimetry);
- Production: Inclusive electron scattering in DIS and resonance region with longitudinally polarized 11 GeV electron beam;
- Supporting measurements: reference cell 3 He, N_{2} and H_{2} rates, positron rate, elastic scattering and Delta asymmetry and optics (2.2 GeV beam).

Performance Requirements

- Polarized beam polarization 85% requested, (minimum 80%), measured to 2% using Moller; Moller measurement once every 7-10 days (and at least at each energy and at each Wien angle change); transverse beam polarization < 1% desired.</p>
- \blacksquare Beam size no larger than 300 μ m in σ , 200 μ m in σ desired.
- 11 GeV, 30 μA, beam trip goal: (6-10) per hour
- circular rastering of beam spot to a radius of 2.5 mm and "no hot spot", current ramping at (1) μ A-step/(2 sec) on polarized target cell heat stress calculation underway;
- changing beam IHWP status every 12 hours or at least half-way of each production kinematics;
- beam charge asymmetry controlled to under 200ppm (average over each run);
- In longitudinal and transverse spin configurations; spin direction known to ± 0.5 degree desired and ± 1.0 degree required; density known to 3% (2% from fill density and 2% from operating temperature).
- Q^2 known to 1% desired (Ebeam at the ±1E-3 level; spectrometer momentum to ±1E-3, angle to ±0.06 deg).
- PID performance: pion rejection > 10,000 desired by combining calorimeter and Cherenkov, > 5000 required, while keeping electron efficiency at 99% (desired) or 95% (min) each (worst case at SHMS momentum 2.25 GeV/c and HMS 2.82 GeV/c).


March 19th, 2018


A₁ⁿ Kinematics and Production Beam Time

Kine	E_b			θ	E_p	e^{-}	production	e^+ prod.	Tot. Time
	(GeV)		$(^{\circ})$	(GeV)		(hours)	(hours)	(hours)
	DIS								
1	11.0		HMS	12.5	5.70		12	0	12
2	11.0		HMS	12.5	6.80		24	0	24
3	11.0		HMS	30.0	2.82		96	0	96
4	11.0		HMS	30.0	3.50		551	1	552
A	11.0		SHMS	12.5	5.80		36	0	36
В	11.0		SHMS	30.0	3.00		464	0	464
\mathbf{C}	11.0		SHMS	30.0	2.25		88	0	88
					Resor	ance	es		
D	11.0		SHMS	12.5	7.50		96	0	96
Kine	E	b	E_p	θ	elastic x	-sec	elastic	Asymmetr	ry Time
	Ge	V	GeV	(\circ)	(nb/si	:)	rate (Hz)		(hours)
Elastic	= 2.2	00	2.160	12.5	106.98	86	1293.9	$A_{\parallel} = 0.058$	
$\Delta(123)$	2) 2.2	00	1.815	12.5	-		-	$A_{\perp} \sim \text{a few}$	7 % 6

A₁ⁿ Kinematics and Expected Results

30uA, 85% beam, 40cm, 60% target

Total Beam Time Allocation

- Run-group A1n/d2n commissioning of the beamline, target, and spectrometers: 3 PAC days or 72 PAC hours (not including initial Moller commissioning)
- 1-pass elastic PbPt and Δ transverse asymmetries: 14 PAC hours (incl N2 runs);
- optics: 8 PAC hours;
- Moller: at least 3 measurements at 11 GeV (10 PAC hrs), one at 2.2 GeV (6 PAC hrs).
- beam pass change from 2.2 to 11 GeV: 8 PAC hours
- Production: DIS 636 PAC hours, RES 48 PAC hours (2-arms equivalent)
- Reference cell runs (N_2 and 3 He, and H2): 12 PAC hours (2hr each at kine#1 and #2 or #A and #D, 4hr each at #3 and #4 or #B and #C)
- Configuration changes: 12x0.5 PAC hrs (angle or momentum or target spin directions), 8 PAC hrs polarity, 14 PAC hours total
- Target polarization measurements: 4% of production, 28 PAC hours total
- Total beam time: 36 PAC days

Backup Slides

A₁ⁿ Uncertainties

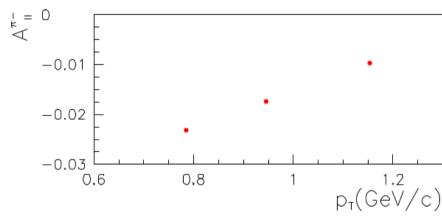
Table 3: Projected statistical and systematic uncertainties for DIS data at different x and Q^2 . As a comparison, the 6 GeV result at x=0.61 was $A_1^n=+0.175\pm0.048(\mathrm{stat.})^{+0.026}_{-0.028}(\mathrm{syst.})$. And the 2010 proposed values are $\Delta A_1^n(\mathrm{stat.})=0.0288$ and $\Delta A_1^n(\mathrm{total})=0.0446$.

\overline{x}	$\Delta A_1^n(\text{stat.})$	$\Delta A_1^n(\text{stat.})$	$\Delta A_1^n(\text{stat.})$	$\Delta A_1^n(\text{syst.})$	$\Delta A_1^n(\text{total})$
	low Q^2	high Q^2	two Q^2 combined		
0.25	0.0034	_	0.0034	0.0131	0.0135
0.30	0.0037	_	0.0037	0.0130	0.0135
0.35	0.0048	0.0157	0.0046	0.0129	0.0137
0.40	0.0062	0.0159	0.0058	0.0134	0.0146
0.45	0.0085	0.0123	0.0070	0.0138	0.0154
0.50	0.0124	0.0112	0.0083	0.0146	0.0168
0.55	_	0.0122	0.0107	0.0159	0.0192
0.60	_	0.0135	0.0134	0.0180	0.0224
0.65	_	0.0157	0.0157	0.0217	0.0268
0.71	_	0.0189	0.0189	0.0254	0.0316
0.77		0.0346	0.0346	0.0325	0.0475

Table 4: Projected statistical and systematic uncertainties for resonance data at different and Q^2 . Resonance data will be taken at a scattering angle of 12.5° (same as the low Q^2 DIS data). The DIS fit for A_1 was used in the systematic uncertainty study.

x	$\Delta A_1^n(\text{stat.})$	$\Delta A_1^n(\text{syst.})$	$\Delta A_1^n(\text{total})$
0.55	0.0180	0.0171	0.0249
0.60	0.0171	0.0198	0.0261
0.65	0.0158	0.0215	0.0266
0.71	0.0269	0.0279	0.0388
0.77	0.0371	0.0362	0.0518
0.83	0.0505	0.0476	0.0694
0.89	0.0310	0.0678	0.0746

A_1^n Kinematics - x, W, and background estimation


	Kine	E_{b}	E_p	θ	(e, e')	π^-/e	e^+/e^-	$x (Q^2, \text{ in GeV}^2) (W, \text{ in GeV})$	
		GeV	GeV	(°)	rate (Hz)			coverages	
	DIS								
1	HMS	11.0	5.70	12.5	575.42	< 0.4	< 0.1%	0.25-0.55 (2.59- 4.40) (2.1- 2.9)	
2	HMS	11.0	6.80	12.5	426.14	< 0.2	< 0.1%	0.25 - 0.60 (2.43 - 4.53) (2.0 - 2.9)	
3	HMS	11.0	2.82	30.0	2.69	< 10.7	< 0.1%	0.40- 0.71 (6.55 - 10.19) (2.2 - 3.3)	
4	HMS	11.0	3.50	30.0	0.74	< 2.4	< 0.1%	0.50-0.77 (7.72-10.60) (2.0- 2.9)	
A	SHMS	11.0	5.80	12.5	701.73	< 0.5	< 0.1%	0.25-0.60 (2.64- 4.42) (2.0- 3.0)	
В	SHMS	11.0	3.00	30.0	2.70	< 12.2	< 0.1%	0.40- 0.77 (6.63 - 10.54) (2.0 - 3.3)	
С	SHMS	11.0	2.25	30.0	6.96	< 91.0	< 0.1%	0.25 - 0.65 (4.71 - 9.49) (2.4 - 3.9)	
	Resonances								
D	SHMS	11.0	7.50	12.5	104.79	_	_	0.50-1.00 (3.12- 4.45) (0.9- 2.0)	

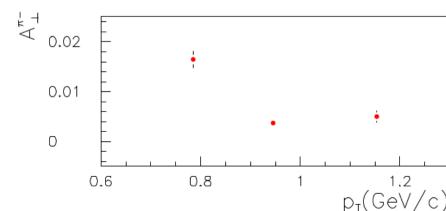

Pion background and PID

Table 6.1: ${}^{3}\text{He results} - A_{||}^{^{3}\text{He}}$ and $A_{\perp}^{^{3}\text{He}}$.

x	Q^2	$A_{ }^{^{3}\mathrm{He}}\pm\mathrm{stat.}\pm\mathrm{sys.}$	$A_{\perp}^{^{3}\mathrm{He}}\pm\mathrm{stat.}\pm\mathrm{sys.}$
0.327	2.709	$-0.01397 \pm 0.00475 \pm 0.00071$	$-0.00216 \pm 0.00955 \pm 0.00011$
0.466	3.516	$-0.00722 \pm 0.00449 \pm 0.00036$	$0.01359 \pm 0.00790 \pm 0.00069$
0.601	4.833	$0.01036 \pm 0.00739 \pm 0.00052$	$-0.01173 \pm 0.01550 \pm 0.00059$

Figure 6-10: Pion asymmetry A^{π^-} results.

ref: E94010 tech note #6

 S_1

Neutron

scattered electron

Beam Transverse Polarization

transverse beam spin is suppressed by γe

$$A_{\parallel}^{Jlab} = \frac{\frac{d^{2}\sigma}{d\Omega dE'} \stackrel{\checkmark \uparrow}{-} - \frac{d^{2}\sigma}{d\Omega dE'} \stackrel{\checkmark \uparrow}{-}}{\frac{d^{2}\sigma}{d\Omega dE'}}$$

$$= \frac{g_{1}[(2xy - \frac{Q^{2}(\nu + \frac{Q^{2}}{2E})}{2ME^{2}})\cos\lambda + \frac{E'\sin\theta(\nu + \frac{Q^{2}}{2E})}{ME}\frac{\sin\lambda}{\gamma_{e}}] - g_{2}\frac{xQ^{2}}{E^{2}}\cos\lambda}{xy^{2}F_{1} + (1 - y - \frac{y^{2}\gamma^{2}}{4})F_{2}}$$

electron beam

and the transverse asymmetry :

$$A_{\perp}^{Jlab} = \frac{\frac{d^2\sigma}{d\Omega dE'} - \frac{d^2\sigma}{d\Omega dE'}}{\frac{d^2\sigma}{d\Omega dE'} + \frac{d^2\sigma}{d\Omega dE'}}$$

$$= \frac{g_1[(2xy - \frac{E'^2\sin\theta^2}{ME})\frac{\sin\lambda}{\gamma_e} + \frac{Q^2E'\sin\theta}{2ME^2}\cos\lambda] + g_2[2xy\frac{\sin\lambda}{\gamma_e} + \cos\lambda\frac{2xE'\sin\theta}{E}]}{xy^2F_1 + (1-y - \frac{y^2\gamma^2}{4})F_2}$$

Requirement on target angle

Aln analysis is dominated by $A_{||}$, which is less sensitive to the target field angle than Aperp:

$$\left(\frac{\Delta \sigma_{pol}}{\sigma_{pol}}\right)_{\alpha=0+\delta\alpha} = (\delta \alpha) \frac{E' \sin \theta}{\frac{g_1}{g_2} \left(yE + \frac{1}{2xM} \left[v - (E - E' \cos \theta)\right] (E - E' \cos \theta)\right) + \left[yE - (E - E' \cos \theta)\right]}$$

$$\left(\frac{\Delta\sigma_{pol}}{\sigma_{pol}}\right)_{\alpha=\frac{\pi}{2}+\delta\alpha} = \left(\delta\alpha\right) \frac{\frac{g_1}{g_2}\left(2\,xyE - \frac{1}{M}\left[\nu - \left(E - E'\cos\theta\right)\right]\left(E - E'\cos\theta\right)\right) + 2\,xyE - 2\,x\left(E - E'\cos\theta\right)}{2\,x\,E'\sin\theta}$$

Requirement on Q²

- dilution relative cross sections
- ullet kinematic variables used to extract $A_{1,2}$ from measured asymmetries
- \bullet $F_{1,2}$ (p, n, 3He) used in nuclear corrections
- A_1^p , PDF (d/u) used in extracting $\Delta q/q$