# A<sub>1</sub><sup>n</sup> Overview and Running Conditions

Xiaochao Zheng, University of Virginia (spokespeople: Gordon Cates, Jianping Chen, Zein-Eddine Meziani, Xiaochao Zheng

1.What are the running conditions for both experiments? Please state clearly the maximum current being used and the target dimensions.

2.What is the operational status/performance requirements of the equipmentneeded by the experiments. Precisely:

a) 3He target - Provide the targets configuration needed, performance requirements and status.

# A<sub>1</sub><sup>n</sup> Experiment Overview

Xiaochao Zheng, University of Virginia (spokespeople: Gordon Cates, Jianping Chen, Zein-Eddine Meziani, Xiaochao Zheng

- First approved in 2006, re-approved in 2010 for 36 PAC days, rated A and with high impact;
- Will be the first time/experiment requiring the use of polarized beam in Hall C after the 12 GeV upgrade;
- Will be the first time/experiment using the polarized <sup>3</sup>He target in Hall C, stage-I target upgrade performance expected: density 12 amg, 40cm long target cell, 30 uA beam current, (55-60)% in-beam polarization (mostly longitudinal, 3% NMR+EPR+pNMR polarimetry);
- Production: Inclusive electron scattering in DIS and resonance region with longitudinally polarized 11 GeV electron beam;
- Supporting measurements: reference cell <sup>3</sup>He, N<sub>2</sub> and H<sub>2</sub> rates, positron rate, elastic scattering and Delta asymmetry and optics (2.2 GeV beam).

### History of Running Conditions Used in A<sub>1</sub><sup>n</sup> Proposals

- 1) 2006 proposal: 15uA, 40cm, Pt=55% best 6 GeV target performance.
- $\Delta A_1^n = \pm 0.071$  (stat)  $\pm 0.032$  (syst) at x=0.77, requested 53 PAC days
- 2) 2010 update:

a) GEN-II became a possible 12 GeV reality - 60uA, 60cm, Pt=60% ("stage-II" upgrade).

| b) SHMS design | Year                  | p  range<br>(GeV/ $c$ ) | $\theta$ range             | $\Delta p/p$    | solid angle<br>(msr) | $\begin{array}{c} y_{targ} \\ (\mathrm{cm}) \end{array}$ |
|----------------|-----------------------|-------------------------|----------------------------|-----------------|----------------------|----------------------------------------------------------|
| changed:       | 2006 design           | 2.0-10.4                | $5.5^{\circ} - 30^{\circ}$ | (-15.0%,25.0%)  | 3.8                  | 30                                                       |
|                | 2010 (current) design | 2.0-11                  | $5.5^{\circ} - 40^{\circ}$ | (-10.0%, 22.0%) | 5.0                  | 30                                                       |

c) resonance settings added

d) rates estimated using the smaller value of PDF (MRST, CTEQ) and NMC F2 fits.

proposed:  $\Delta A_1^n = \pm 0.029$  (stat)  $\pm 0.034$  (syst) at x=0.77, total 36 PAC days (approved)

3) 2014-2018:

a) Stage-II upgrade will cost significant time, effort, and modification of existing JLab target. Stage-I upgrade becomes a more realistic option: 30uA, 40cm, Pt=(55-60)%

b) full SHMS simulation became available. Also used Hall C F2 and R code for rates.

- we keep the same 36 PAC day beam time and adjusted the kinematics slightly to maximize the outcome at x=0.77:  $\Delta A_1^n = \pm 0.035$  (stat)  $\pm 0.033$  (syst)

March 19<sup>th</sup>, 2018

# Performance Requirements

- Polarized beam polarization 85% requested, (minimum 80%), measured to 2% using Moller; Moller measurement once every 7-10 days (and at least at each energy and at each Wien angle change); transverse beam polarization < 1% desired.</p>
- $\hfill a$  Beam size no larger than 300  $\mu m$  in  $\sigma$ , 200  $\mu m$  in  $\sigma$  desired.
- I1 GeV, 30 μA, beam trip goal: (6-10) per hour
- circular rastering of beam spot to a radius of 2.5 mm and "no hot spot", current ramping at (1) μA-step/(2 sec) on polarized target cell – heat stress calculation underway;
- changing beam IHWP status every 12 hours or at least half-way of each production kinematics;
- beam charge asymmetry controlled to under 200ppm (average over each run);
- Iongitudinal and transverse spin configurations; spin direction known to ±0.5 degree desired and ±1.0 degree required; density known to 3% (2% from fill density and 2% from operating temperature).
- Q<sup>2</sup> known to 1% desired (Ebeam at the ±1E-3 level; spectrometer momentum to ±1E-3, angle to ±0.06 deg).
- PID performance: pion rejection > 10,000 desired by combining calorimeter and Cherenkov, > 5000 required, while keeping electron efficiency at 99% (desired) or 95% (min) each (worst case at SHMS momentum 2.25 GeV/c and HMS 2.82 GeV/c).

# A<sub>1</sub><sup>n</sup> Kinematics and Production Beam Time

| Kine          | $E_b$         |    |       | $\theta$     | $E_p$     | $e^-$ | production | $e^+$ prod.                    | To  | t. Time |
|---------------|---------------|----|-------|--------------|-----------|-------|------------|--------------------------------|-----|---------|
|               | (GeV          | )  |       | $(^{\circ})$ | (GeV)     |       | (hours)    | (hours)                        | (]  | nours)  |
| DIS           |               |    |       |              |           |       |            |                                |     |         |
| 1             | 11.0          | Τ  | HMS   | 12.5         | 5.70      |       | 12         | 0                              |     | 12      |
| 2             | 11.0          |    | HMS   | 12.5         | 6.80      |       | 24         | 0                              |     | 24      |
| 3             | 11.0          |    | HMS   | 30.0         | 2.82      |       | 96         | 0                              |     | 96      |
| 4             | 11.0          |    | HMS   | 30.0         | 3.50      |       | 551        | 1                              |     | 552     |
| А             | 11.0          |    | SHMS  | 12.5         | 5.80      | 36    |            | 0                              |     | 36      |
| В             | 11.0          |    | SHMS  | 30.0         | 3.00      | 464   |            | 0                              |     | 464     |
| С             | 11.0          |    | SHMS  | 30.0         | 2.25      | 88    |            | 0                              |     | 88      |
| Resonances    |               |    |       |              |           |       |            |                                |     |         |
| D             | 11.0          |    | SHMS  | 12.5         | 7.50      |       | 96         | 0                              |     | 96      |
|               |               |    |       |              |           |       |            |                                |     |         |
| Kine          | E             | b  | $E_p$ | $\theta$     | elastic x | -sec  | elastic    | Asymmetr                       | ry  | Time    |
|               | Ge            | eV | GeV   | $(^{\circ})$ | (nb/sr    | ;)    | rate (Hz)  |                                |     | (hours) |
| Elastic       | 2.2           | 00 | 2.160 | 12.5         | 106.98    | 6     | 1293.9     | $A_{\parallel} = 0.053$        | 89  | 11.2    |
| $\Delta(123)$ | $2) \mid 2.2$ | 00 | 1.815 | 12.5         | -         |       | -          | $A_{\perp} \sim a \text{ few}$ | 7 % | 6       |



A1n/d2n ERR

### Total Beam Time Allocation (not a run plan)

- Run-group A1n/d2n commissioning of the beamline, target, and spectrometers: 3 PAC days or 72 PAC hours (not including initial Moller commissioning)
- 1-pass elastic PbPt and  $\Delta$  transverse asymmetries: 14 PAC hours (incl N2 runs);
- optics: 8 PAC hours;
- Moller: at least 3 measurements at 11 GeV (10 PAC hrs), one at 2.2 GeV (6 PAC hrs).
- beam pass change from 2.2 to 11 GeV: 8 PAC hours
- Production: DIS 636 PAC hours, RES 48 PAC hours (2-arms equivalent)
- Reference cell runs (N<sub>2</sub> and <sup>3</sup>He, and H2): 12 PAC hours (2hr each at kine#1 and #2 or #A and #D, 4hr each at #3 and #4 or #B and #C)
- Configuration changes: 12x0.5 PAC hrs (angle or momentum or target spin directions), 8 PAC hrs polarity, 14 PAC hours total
- Target polarization measurements: 4% of production, 28 PAC hours total
- Total beam time: 36 PAC days

# Backup Slides

### A<sub>1</sub><sup>n</sup> Uncertainties

Table 3: Projected statistical and systematic uncertainties for DIS data at different x and  $Q^2$ . As a comparison, the 6 GeV result at x = 0.61 was  $A_1^n = +0.175 \pm 0.048(\text{stat.})^{+0.026}_{-0.028}(\text{syst.})$ . And the 2010 proposed values are  $\Delta A_1^n(\text{stat.}) = 0.0288$  and  $\Delta A_1^n(\text{total}) = 0.0446$ .

| x    | $\Delta A_1^n$ (stat.) | $\Delta A_1^n$ (stat.) | $\Delta A_1^n$ (stat.) | $\Delta A_1^n(\text{syst.})$ | $\Delta A_1^n$ (total) |
|------|------------------------|------------------------|------------------------|------------------------------|------------------------|
|      | low $Q^2$              | high $Q^2$             | two $Q^2$ combined     |                              |                        |
| 0.25 | 0.0034                 | —                      | 0.0034                 | 0.0131                       | 0.0135                 |
| 0.30 | 0.0037                 | —                      | 0.0037                 | 0.0130                       | 0.0135                 |
| 0.35 | 0.0048                 | 0.0157                 | 0.0046                 | 0.0129                       | 0.0137                 |
| 0.40 | 0.0062                 | 0.0159                 | 0.0058                 | 0.0134                       | 0.0146                 |
| 0.45 | 0.0085                 | 0.0123                 | 0.0070                 | 0.0138                       | 0.0154                 |
| 0.50 | 0.0124                 | 0.0112                 | 0.0083                 | 0.0146                       | 0.0168                 |
| 0.55 | _                      | 0.0122                 | 0.0107                 | 0.0159                       | 0.0192                 |
| 0.60 | _                      | 0.0135                 | 0.0134                 | 0.0180                       | 0.0224                 |
| 0.65 | _                      | 0.0157                 | 0.0157                 | 0.0217                       | 0.0268                 |
| 0.71 | _                      | 0.0189                 | 0.0189                 | 0.0254                       | 0.0316                 |
| 0.77 | —                      | 0.0346                 | 0.0346                 | 0.0325                       | 0.0475                 |

#### Break-down of Uncertainties



Table 4: Projected statistical and systematic uncertainties for resonance data at different x and  $Q^2$ . Resonance data will be taken at a scattering angle of 12.5° (same as the low  $Q^2$  DIS data). The DIS fit for  $A_1$  was used in the systematic uncertainty study.

| x    | $\Delta A_1^n$ (stat.) | $\Delta A_1^n(\text{syst.})$ | $\Delta A_1^n$ (total) |
|------|------------------------|------------------------------|------------------------|
| 0.55 | 0.0180                 | 0.0171                       | 0.0249                 |
| 0.60 | 0.0171                 | 0.0198                       | 0.0261                 |
| 0.65 | 0.0158                 | 0.0215                       | 0.0266                 |
| 0.71 | 0.0269                 | 0.0279                       | 0.0388                 |
| 0.77 | 0.0371                 | 0.0362                       | 0.0518                 |
| 0.83 | 0.0505                 | 0.0476                       | 0.0694                 |
| 0.89 | 0.0310                 | 0.0678                       | 0.0746                 |

# $A_1^n$ Kinematics - x, W, and background estimation

|            | Kine | $E_{b}$        | $E_p$          | θ    | (e, e')   | $\pi^{-}/e$ | $e^+/e^-$ | $x (Q^2, \text{ in GeV}^2) (W, \text{ in GeV})$ |  |
|------------|------|----------------|----------------|------|-----------|-------------|-----------|-------------------------------------------------|--|
|            |      | $\mathrm{GeV}$ | $\mathrm{GeV}$ | (°)  | rate (Hz) |             |           | coverages                                       |  |
| DIS        |      |                |                |      |           |             |           |                                                 |  |
| 1          | HMS  | 11.0           | 5.70           | 12.5 | 575.42    | < 0.4       | < 0.1%    | 0.25 - 0.55 (2.59 - 4.40) (2.1 - 2.9)           |  |
| 2          | HMS  | 11.0           | 6.80           | 12.5 | 426.14    | < 0.2       | < 0.1%    | 0.25 - 0.60 (2.43 - 4.53) (2.0 - 2.9)           |  |
| 3          | HMS  | 11.0           | 2.82           | 30.0 | 2.69      | < 10.7      | < 0.1%    | 0.40-0.71 ( $6.55-10.19$ ) ( $2.2-3.3$ )        |  |
| 4          | HMS  | 11.0           | 3.50           | 30.0 | 0.74      | < 2.4       | < 0.1%    | 0.50-0.77 ( $7.72-10.60$ ) ( $2.0-2.9$ )        |  |
| А          | SHMS | 11.0           | 5.80           | 12.5 | 701.73    | < 0.5       | < 0.1%    | 0.25 - 0.60 (2.64 - 4.42) (2.0 - 3.0)           |  |
| В          | SHMS | 11.0           | 3.00           | 30.0 | 2.70      | < 12.2      | < 0.1%    | 0.40-0.77 ( $6.63-10.54$ ) ( $2.0-3.3$ )        |  |
| С          | SHMS | 11.0           | 2.25           | 30.0 | 6.96      | < 91.0      | < 0.1%    | 0.25 - 0.65 (4.71 - 9.49) (2.4 - 3.9)           |  |
| Resonances |      |                |                |      |           |             |           |                                                 |  |
| D          | SHMS | 11.0           | 7.50           | 12.5 | 104.79    | —           | _         | 0.50-1.00 (3.12-4.45) (0.9-2.0)                 |  |

### Size of Measured Asymmetries

Table 6.1: <sup>3</sup>He results  $-A_{\parallel}^{^{3}\text{He}}$  and  $A_{\perp}^{^{3}\text{He}}$ .

| x     | $Q^2$ | $A_{\parallel}^{^{3}\mathrm{He}}\pm\mathrm{stat.}\pm\mathrm{sys.}$ | $A_{\perp}^{^{3}\mathrm{He}}\pm\mathrm{stat.}\pm\mathrm{sys.}$ |  |  |
|-------|-------|--------------------------------------------------------------------|----------------------------------------------------------------|--|--|
| 0.327 | 2.709 | $-0.01397 \pm 0.00475 \pm 0.00071$                                 | $-0.00216 \pm 0.00955 \pm 0.00011$                             |  |  |
| 0.466 | 3.516 | $-0.00722 \pm 0.00449 \pm 0.00036$                                 | $0.01359 \pm 0.00790 \pm 0.00069$                              |  |  |
| 0.601 | 4.833 | $0.01036 \pm 0.00739 \pm 0.00052$                                  | $-0.01173 \pm 0.01550 \pm 0.00059$                             |  |  |

Figure 6-10: Pion asymmetry  $A^{\pi^-}$  results.



Beam Transverse  
Polarization  

$$I_{\text{transverse beam spin}}_{\text{is suppressed by }\gamma e}$$

$$A_{\parallel}^{Jlab} = \frac{\frac{d^2\sigma}{d\Omega dE'} \sqrt[\gamma]{h}}{\frac{d^2\sigma}{d\Omega dE'} - \frac{d^2\sigma}{d\Omega dE'} \sqrt[\gamma]{h}}{\frac{d^2\sigma}{d\Omega dE'} + \frac{d^2\sigma}{d\Omega dE'} \sqrt[\gamma]{h}}$$

$$= \frac{g_1[(2xy - \frac{Q^2(\nu + \frac{Q^2}{2E})}{2ME^2})\cos\lambda + \frac{E'\sin\theta(\nu + \frac{Q^2}{2E})\sin\lambda}{ME} - \frac{g_2xQ^2}{r_e}\cos\lambda}{xy^2F_1 + (1 - y - \frac{y^2\gamma^2}{4})F_2}$$
and the transverse asymmetry :  

$$A_{\perp}^{Jlab} = \frac{\frac{d^2\sigma}{d\Omega dE'} \sqrt[\gamma]{h}}{\frac{d^2\sigma}{d\Omega dE'} + \frac{d^2\sigma}{d\Omega dE'} \sqrt[\gamma]{h}}$$

$$= \frac{g_1[(2xy - \frac{E'^2\sin\theta^2}{ME})\frac{\sin\lambda}{\gamma_e} + \frac{Q^2E'\sin\theta}{2ME^2}\cos\lambda] + g_2[2xy\frac{\sin\lambda}{\gamma_e} + \cos\lambda\frac{2xE'\sin\theta}{E}]}{xy^2F_1 + (1 - y - \frac{y^2\gamma^2}{4})F_2}$$

March 19<sup>th</sup>, 2018

A1n/d2n ERR

#### Requirement on target angle

A1n analysis is dominated by  $A_{||}$ , which is less sensitive to the target field angle than Aperp:

$$\left(\frac{\Delta\sigma_{pol}}{\sigma_{pol}}\right)_{\alpha=0+\delta\alpha} = (\delta\alpha) \frac{E'\sin\theta}{\frac{g_1}{g_2} \left(yE + \frac{1}{2xM} \left[v - (E - E'\cos\theta)\right] (E - E'\cos\theta)\right] + \left[yE - (E - E'\cos\theta)\right]}$$

$$\left(\frac{\Delta\sigma_{pol}}{\sigma_{pol}}\right)_{\alpha=\frac{\pi}{2}+\delta\alpha} = (\delta\alpha)\frac{\frac{g_1}{g_2}\left(2xyE - \frac{1}{M}\left[\nu - (E - E'\cos\theta)\right](E - E'\cos\theta)\right) + 2xyE - 2x(E - E'\cos\theta)}{2xE'\sin\theta}$$

### Requirement on $Q^2$

- dilution relative cross sections
- kinematic variables used to extract  $A_{1,2}$  from measured asymmetries
- F<sub>1,2</sub> (p, n, 3He) used in nuclear corrections
- $A_1^p$ , PDF (d/u) used in extracting  $\Delta q/q$