Probing the Spin Structure of the Neutron:

E12-06-121: d_2 and g_2 for the Neutron

Spokespeople:
T. Averett, W. Korsch, Z.E. Meziani, B. Sawatzky

Brad Sawatzky
Jefferson Lab
• Hall C: SHMS + HMS
• Two beam energies:
 → 11 GeV/c (production)
 → 2.2 GeV/c (calib.)
• Beam Current
 → 30 uA (production)
 → 60 uA (max, calib.)
• Target: 40 cm Polarized 3He
• Each arm measures an absolute polarized cross section independent of the other arm \((g_1, g_2)\)
 → \(d_2(Q^2) = \int_0^1 x^2 [2g_1(x, Q^2) + 3g_2(x, Q^2)] dx\)
• SHMS collects data at
 → \(\Theta = 11^\circ, 13.3^\circ, 15.5^\circ\) and \(18.0^\circ\) for 125 hrs each
 → data from each setting divided into 4 bins
• HMS collects data at
 → \(\Theta = 13.5^\circ, 16.4^\circ, 20.0^\circ\) and \(25.0^\circ\) for 125 hrs each
Projected results for E12-06-121

\(Q^2\) evolution of \(d_2^n\) in a region where models are thought to be accurate.

Direct overlap with 6 GeV Hall A measurements.

Projected \(g_2^n\) points are vertically offset from zero along lines that reflect different (roughly) constant \(Q^2\) values from 2.5—7 GeV^2.
Standard Hall C Detector Packages

- **SHMS ('default' detector package)**
 - Hodoscopes, Wire chambers, NGC, Calorimeter
 - HGC tank remains installed: may pump to vacuum, or fill with Argon for auxiliary PID

- **HMS ('default' detector package)**
 - Hodoscopes, Wire chambers, Calorimeter
 - HGC fill with Argon, or C4F10 (sub-atmosphere)

- **DAQs**
 - Standard DAQ and triggers

- **See also:** [Spectrometer and Detector Systems talk](#)
Nominal Beam Requirements

• Beam Characteristics
 » See 'Performance Requirements' slide in A1n overview and running conditions for general shared requirements.
 → 1-pass, 5-pass requested (see upcoming slide for more details)
 → Beam polarization: 80%
 → < 50 ppm charge asym (average over ~ 1–2 hr run)
 → 30 uA (max) on glass cell targets
 → 60 uA (max) on solid targets
Nominal Target Requirements

- Polarized ^3He Target Requirements
 » See 'Performance Requirements' slide in A1n overview and running conditions for general shared target requirements.
 -> 55% polarization
 -> 30 uA beam current capability
 -> ~0.1 spin angle measurement (2 mrad)
 » Challenging, but achievable

- Target Ladder components
 -> Polarized ^3He production cell (40cm)
 -> Reference cell:
 » vacuum, H_2, ^3He, Nitrogen
 -> Optics foils (7)
 -> Single-carbon foil
 -> Carbon-hole (alignment, raster checks)
Beam Time Allocation

- PAC 36 approved E12-06-121 for requested 700 PAC hours (29 PAC days)
 → 5-pass beam (nominal 11.0 GeV/c) for ~ 676 PAC hours
 → 1-pass beam (nominal 2.2 GeV/c) for ~ 20 PAC hours + pass change → 5-pass
 » [*] ~ 20 calibration hours include data to be shared w/ A1n (elastics, optics, etc.)

- 1-pass Running (Calibrations) [~20 PAC hours]
 → Optics [2 PAC hours*]
 → H(e,e'p) elastics, C, 3He elastic, QE calibrations [15 PAC hours*]
 → BCM, BPM calibrations [2 PAC hours*]

- Pass change 1→ 5 [~4 PAC hours*]

- 5-pass Running (Production) [~676 PAC hours]
 → Production [~600 PAC hours]
 → Optics, BCM, Misc. [18 PAC hours]
 → Target polarization measurements (4% of production) [24 PAC hours]
 → Reference cell runs (N_2, 3He, vacuum) [8 PAC hours]
 → Positive polarity [16 PAC hours]
 → Moller measurements (x4) [12 PAC hours]
Fallback / Contingency Plans

- Original proposal approved by PAC30 was more conservative:
 - Beam
 - 10 uA
 - 80% polarized
 - Target: 2008 params
 - 40 cm long
 - 50% polarization
 - 3 'paired' kinematic groups (instead of 4)
 - ~200 hours for each pair

- Worst case:
 - Fall back to these params and we still have a viable measurement.

- See also:
 - Section 5 of PAC36 Update (last few paragraphs)
Charge Items Addressed

1. What are the running conditions for both experiments
 → Please state clearly the maximum current being used and the target dimensions.

2. What is the operational status/performance requirements of the equipment needed by the experiments. Precisely:
 → a) 3He target
 Provide the targets configuration needed, performance requirements and status.
Supporting Documentation

• Supporting Documentation
 → PAC30 Proposal
 → PAC36 Update

• Polarized 3He ERR Page
 Supporting Documentation

• E06-014 (2009 d2n Exp.) Wiki
Backup Slides
Magnetic Field Direction

Longitudinal Field: - air floating compass (left)
- needle compass (above)
\[\Delta \Theta < 2 \text{ mrad} (< 0.1 \text{ degree}) \]

Transverse Field: - air floating compass (left)
\[\Delta \theta \sim 1 \text{ mrad} (~0.05 \text{ degree}) \]

C. Dutta, Ph. D. Thesis, UKy, 2010
Production Kinematics for HMS

Table 4: Expected rates for the three HMS settings. The uncertainties for \(A_{\parallel} \) and \(A_{\perp} \) are statistical only.

<table>
<thead>
<tr>
<th>(\theta_0) [°]</th>
<th>(E'_{\text{cent}}) [GeV]</th>
<th>(Q^2) [GeV²]</th>
<th>(x)</th>
<th>(W) [GeV]</th>
<th>(e^-) rate [Hz]</th>
<th>(\pi^-) rate [Hz]</th>
<th>(t_{\parallel}) [hrs]</th>
<th>(t_{\perp}) [hrs]</th>
<th>(\Delta A_{\parallel}) [(\cdot 10^{-4})]</th>
<th>(\Delta A_{\perp}) [(\cdot 10^{-4})]</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.5</td>
<td>4.305</td>
<td>2.617</td>
<td>0.208</td>
<td>3.293</td>
<td>954</td>
<td>765</td>
<td>8</td>
<td>117</td>
<td>2.0</td>
<td>0.6</td>
</tr>
<tr>
<td>16.4</td>
<td>5.088</td>
<td>4.555</td>
<td>0.410</td>
<td>2.727</td>
<td>218</td>
<td>15</td>
<td>12</td>
<td>113</td>
<td>3.9</td>
<td>1.2</td>
</tr>
<tr>
<td>20.0</td>
<td>4.000</td>
<td>5.31</td>
<td>0.404</td>
<td>2.951</td>
<td>76</td>
<td>66</td>
<td>10</td>
<td>115</td>
<td>6.0</td>
<td>1.8</td>
</tr>
<tr>
<td>25.0</td>
<td>2.500</td>
<td>5.15</td>
<td>0.323</td>
<td>3.417</td>
<td>20</td>
<td>84</td>
<td>13</td>
<td>112</td>
<td>10.7</td>
<td>3.1</td>
</tr>
</tbody>
</table>

- Rate table from PAC36
 → 30 uA beam
 → 55% polarization
 → Assumed 60 cm long cell

- Current target
 → 40 cm long cell

- As discussed in the PAC36 update, we have been conservative on our statistical run times and are not statistics limited, even with the shorter production cell.
Production Kinematics for SHMS

Table 3: Kinematic bins and expected rates for the SHMS. The uncertainties for A_\parallel and A_\perp are statistical only.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$\theta_0 = 11^\circ$</td>
<td>7.112</td>
<td>2.875</td>
<td>0.394</td>
<td>2.305</td>
<td>1058</td>
<td>11</td>
<td>12</td>
<td>113</td>
<td>2.0</td>
<td>0.5</td>
</tr>
<tr>
<td>$E'_{\text{cent}} = 7.5$ GeV</td>
<td>7.709</td>
<td>3.116</td>
<td>0.504</td>
<td>1.988</td>
<td>708</td>
<td>3.1</td>
<td>12</td>
<td>113</td>
<td>2.3</td>
<td>0.7</td>
</tr>
<tr>
<td>$\theta_0 = 13.3^\circ$</td>
<td>6.647</td>
<td>3.922</td>
<td>0.480</td>
<td>2.267</td>
<td>268</td>
<td>3.1</td>
<td>12</td>
<td>113</td>
<td>3.5</td>
<td>1.0</td>
</tr>
<tr>
<td>$E'_{\text{cent}} = 7.0$ GeV</td>
<td>7.203</td>
<td>4.250</td>
<td>0.596</td>
<td>1.941</td>
<td>139</td>
<td>0.8</td>
<td>12</td>
<td>113</td>
<td>4.8</td>
<td>1.5</td>
</tr>
<tr>
<td>$\theta_0 = 15.5^\circ$</td>
<td>5.997</td>
<td>4.798</td>
<td>0.511</td>
<td>2.342</td>
<td>96</td>
<td>1.9</td>
<td>12</td>
<td>113</td>
<td>5.7</td>
<td>1.8</td>
</tr>
<tr>
<td>$E'_{\text{cent}} = 6.3$ GeV</td>
<td>6.496</td>
<td>5.197</td>
<td>0.614</td>
<td>2.037</td>
<td>49</td>
<td>0.47</td>
<td>12</td>
<td>113</td>
<td>7.8</td>
<td>2.5</td>
</tr>
<tr>
<td>$\theta_0 = 18.0^\circ$</td>
<td>5.348</td>
<td>5.756</td>
<td>0.542</td>
<td>2.397</td>
<td>35</td>
<td>1.1</td>
<td>12</td>
<td>113</td>
<td>9.5</td>
<td>3.1</td>
</tr>
<tr>
<td>$E'_{\text{cent}} = 5.6$ GeV</td>
<td>5.790</td>
<td>6.235</td>
<td>0.637</td>
<td>2.106</td>
<td>17</td>
<td>0.25</td>
<td>12</td>
<td>113</td>
<td>13</td>
<td>4.4</td>
</tr>
</tbody>
</table>

- Table from PAC36 update
 → Same considerations as noted on prior slide apply.
Systematic Error Table

<table>
<thead>
<tr>
<th>Item description</th>
<th>Subitem description</th>
<th>Relative uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target polarization</td>
<td></td>
<td>1.5 %</td>
</tr>
<tr>
<td>Beam polarization</td>
<td></td>
<td>3 %</td>
</tr>
<tr>
<td>Asymmetry (raw)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Target spin direction (0.1°)</td>
<td></td>
<td>$< 5 \times 10^{-4}$</td>
</tr>
<tr>
<td>- Beam charge asymmetry</td>
<td></td>
<td>< 50 ppm</td>
</tr>
<tr>
<td>Cross section (raw)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- PID efficiency</td>
<td></td>
<td>< 1 %</td>
</tr>
<tr>
<td>- Background Rejection efficiency</td>
<td></td>
<td>≈ 1 %</td>
</tr>
<tr>
<td>- Beam charge</td>
<td></td>
<td>< 1 %</td>
</tr>
<tr>
<td>- Beam position</td>
<td></td>
<td>< 1 %</td>
</tr>
<tr>
<td>- Acceptance cut</td>
<td></td>
<td>2-3 %</td>
</tr>
<tr>
<td>- Target density</td>
<td></td>
<td>< 2 %</td>
</tr>
<tr>
<td>- Nitrogen dilution</td>
<td></td>
<td>< 1 %</td>
</tr>
<tr>
<td>- Dead time</td>
<td></td>
<td>< 1 %</td>
</tr>
<tr>
<td>- Finite Acceptance cut</td>
<td></td>
<td>< 1 %</td>
</tr>
<tr>
<td>Radiative corrections</td>
<td></td>
<td>≤ 5 %</td>
</tr>
<tr>
<td>From 3He to Neutron correction</td>
<td></td>
<td>5 %</td>
</tr>
<tr>
<td>Total systematic uncertainty (for both $g_2^q(x, Q^2)$ and $d_2(Q^2)$)</td>
<td></td>
<td>≤ 10 %</td>
</tr>
<tr>
<td>Estimate of contributions to d_2 from unmeasured region</td>
<td>$\int_{0.003}^{0.23} \frac{d_2}{d_2} , dx$</td>
<td>4.8×10^{-4}</td>
</tr>
<tr>
<td>Projected absolute statistical uncertainty on d_2</td>
<td></td>
<td>$\Delta d_2 \approx 5 \times 10^{-4}$</td>
</tr>
<tr>
<td>Projected absolute systematic uncertainty on d_2 (assuming $d_2 = 5 \times 10^{-5}$)</td>
<td></td>
<td>$\Delta d_2 \approx 5 \times 10^{-4}$</td>
</tr>
</tbody>
</table>

- **PREx-II, CREx ERR accepted < 0.1 ppm Charge Asym requirement as achievable**
- **Target spin direction precision achievable (see backup slide)**
E12-06-121: d_2^n, g_2^n

- Directly measure the Q^2 dependence of the neutron $d_2^n(Q^2)$ at $Q^2 \approx 3, 4, 5, 6$ GeV2 with the new polarized 3He target.
 → The new Hall C SHMS is ideally suited to this task!
- Doubles number of precision data points for $g_2^n(x, Q^2)$ in DIS region.
 → Q^2 evolution of g_2^n over $(0.23 < x < 0.85)$
- d_2 is a clean probe of quark-gluon correlations / higher twist effects
- Connected to the color Lorentz force acting on the struck quark (Burkardt)
 → same underlying physics as in SIDIS k_\perp studies
- Investigate the present discrepancy between data and theories.

- Spokespeople: T. Averett, W. Korsch, Z.E. Meziani, B. Sawatzky