Precise Measurement of Nuclear Dependence of Structure Functions in Light Nuclei

(JLab expt E03-103 ; Spokepersons: John Arrington and Dave Gaskell)

For the E03-103 collaboration

Aji Daniel

University of Houston.
Thesis advisor: Ed V. Hungerford

Hall C user’s meeting 01.05.05
Outline

• Introduction
• JLAB experiment E03-103
• Work in progress
• Summary
The EMC Effect

- Energy scale of DIS interactions (GeV).
 Energy scale of nuclear processes (MeV) → result doesn’t depend on nuclear target.
 (not true!!!)

- Measurements of $\frac{F_2^A}{F_2^D}$ (EMC, SLAC, BCDMS) have demonstrated modification of quark distributions in nuclei.

![Figure 1: (σ_F/σ_D) ratios as a function of x from EMC (hollow circles), SLAC (solid circles), and BCDMS (squares). The data have been averaged over Q^2 and corrected for neutron excess.](image)
The EMC Effect

- The nuclear EMC effect shows that quark distribution is different in nuclear systems.

- Magnitude depends on A but shape more or less same.

- Several models, but valid only in certain kinematical regions.

Figure 1: (σ_{Fe}/σ_{H}) ratios as a function of x from EMC (hollow circles), SLAC (solid circles), and BCDMS (squares). The data have been averaged over Q^2 and corrected for neutron excess.
The EMC Effect

- EMC effect has been measured for many targets and over a large kinematic range.

Extensive measurements on heavy targets
SLAC E139
The EMC Effect

- Ratios can be parameterized as \(\log(A) \) or linear density dependence

- \(^4\text{He}/\text{D} \) is more sensitive, but uncertainty is large for existing data and consistent with both parameterizations

- Addition of \(^3\text{He} \) data will impose new constraints on the parameterization
The EMC Effect

- For heavy nuclei, the magnitude of the EMC effect varies with A but the shape is more or less the same.

- Observed x dependence in ^4He is consistent, but uncertainties are large.

- Recent predictions indicate that size and magnitude may be different for light nuclei

(point of maximum suppression and crossover of ratio at large x)
Inclusive electron scattering from cryo targets 1H, 2H, 3He, 4He and solid targets Al, C, Be, Cu, Au over a broad range of kinematics.

Precise measurement on 4He, over SLAC E139.

First measurement of EMC effect on 3He for $x > 0.4$

Test models of the EMC effect in “exact” few-body calculations.

Guidance for calculations of nuclear effects in deuterium.

Information on the neutron structure function.
<table>
<thead>
<tr>
<th>Source</th>
<th>Absolute Uncertainty</th>
<th>Relative Uncertainty</th>
<th>$\delta \sigma / \sigma (%)$</th>
<th>$\delta R / R (%)$ point-to-point</th>
<th>$\delta R / R (%)$ scale</th>
<th>$\delta R / R (%)$ Statistical</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMS Momentum</td>
<td><0.1%</td>
<td>0.01%</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Beam Energy</td>
<td><0.1%</td>
<td><0.02%</td>
<td>0.2</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>θ</td>
<td>0.5mr</td>
<td>0.2mr</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>-</td>
</tr>
<tr>
<td>t_D</td>
<td>0.5%</td>
<td></td>
<td>0.5</td>
<td>-</td>
<td>0.5</td>
<td>-</td>
</tr>
<tr>
<td>t_{He}</td>
<td>1.0%</td>
<td></td>
<td>1.0</td>
<td>-</td>
<td>1.0</td>
<td>-</td>
</tr>
<tr>
<td>Charge</td>
<td>0.4%</td>
<td>0.3%</td>
<td>0.5</td>
<td>0.42</td>
<td>0.2</td>
<td>-</td>
</tr>
<tr>
<td>Target Boiling</td>
<td><1.0%</td>
<td>0.5%</td>
<td><1.0</td>
<td>0.3</td>
<td>0.3</td>
<td>-</td>
</tr>
<tr>
<td>Endcap Subtraction</td>
<td><1.0%</td>
<td>0.2%</td>
<td><1.0</td>
<td>0.1</td>
<td>0.1</td>
<td>-</td>
</tr>
<tr>
<td>Acceptance</td>
<td>1.0-2.0%</td>
<td>0.2%</td>
<td>1.0-2.0</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Radiative Corrections</td>
<td>2.0%</td>
<td>0.5%</td>
<td>2.0</td>
<td>0.3</td>
<td>0.4</td>
<td>-</td>
</tr>
<tr>
<td>Detector Efficiency</td>
<td>0.5%</td>
<td>0.2%</td>
<td>0.5</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Deadtime Correction</td>
<td><0.5%</td>
<td>0.2%</td>
<td><0.5</td>
<td>0.1</td>
<td>0.2</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>2.7-3.3</td>
<td>0.7%</td>
<td>1.3</td>
<td>0.5-0.7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>E139</td>
<td>3.3-3.7</td>
<td>1.6%</td>
<td>2.2</td>
<td>1.0-2.2</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 4: Systematic uncertainties in the ratio σ_{He}/σ_{2H}, compared to E139 uncertainties (for 4He).
Experiment
E03-103 @ JLAB

- Ran last summer and fall along with E02-019 at HALL C of Jlab with 5.77 GeV beam energy.
- Increased beam current (due to improvement in target cooling system) allowed for extensive background and elastic studies.
- Data on
 Cryo targets ^3He, ^4He, LD$_2$, LH$_2$
 Solid targets Al, C, Be, Cu ,Au
 at 18, 22, 26, 32, 40 and 50 degrees
EMC effect at large x

- For $x>0.6$, E03-103 data at $W<4$ GeV (resonance region)

- Recent data from JLab suggest that even in the resonance region inclusive cross sections scale.

- Hall C data (E89-008) taken at 4 GeV, sees no apparent deviation (at the 10% level) from scaling for $W^2>2$ GeV2 (for $Q^2 > 3$ GeV2)
Analysis

Cerenkov efficiency correction

<table>
<thead>
<tr>
<th>δ (%)</th>
<th>cerEff</th>
</tr>
</thead>
<tbody>
<tr>
<td>-8</td>
<td>0.88</td>
</tr>
<tr>
<td>-4</td>
<td>0.9</td>
</tr>
<tr>
<td>0</td>
<td>0.92</td>
</tr>
<tr>
<td>4</td>
<td>0.94</td>
</tr>
<tr>
<td>8</td>
<td>0.96</td>
</tr>
<tr>
<td>12</td>
<td>0.98</td>
</tr>
<tr>
<td>16</td>
<td>0.99</td>
</tr>
<tr>
<td>20</td>
<td>1.02</td>
</tr>
</tbody>
</table>

Energy (GeV):

- 0.89 GeV
- 1.69 GeV
- 2.97 GeV
- 3.50 GeV
- 4.43 GeV
Analysis

Cerenkov efficiency correction

![Graph showing Cerenkov efficiency correction](image-url)
Analysis
Luminosity scan

\[
\chi^2 / \text{ndf} = 2.475 / 4 \\
\text{Prob} = 0.6491 \\
p_0 = 1 \pm 0.003981 \\
p_1 = 2.188e-06 \pm 6.953e-05
\]

\[
\chi^2 / \text{ndf} = 3.081 / 4 \\
\text{Prob} = 0.5443 \\
p_0 = 1 \pm 0.00376 \\
p_1 = -0.0003102 \pm 6.404e-05
\]

Jason
Analysis

Acceptance correction: multiple scattering

Nadia
External radiative corrections are different for the dummy target than for the cryotarget walls.

\[R_{ext} = \frac{R_d}{R_{cryo}} \]

Dave
Comparison:

Carbon 1.14 GeV, 40 Degree

Cross section (mbarn/GeV.Str)

Eprime(GeV)
Analysis
Preliminary ratios: - Carbon

includes 1.5% point-to-point systematic uncertainty
3% normalization uncertainty (target thickness, radiative and bin centering corrections)

Jason
Analysis
Preliminary ratios:-He4

Jason
To do

- Acceptance corrections at low momentum need to be worked out
- Need to iterate input model for bin centering and radiative corrections
- Need to study variation of beam position, beam angle
- Need to include Coulomb corrections
Summary

• Study of the EMC effect in light nuclei will help us to distinguish between models and impose new constraints

• E03-103 will increase the precision of 4He ratios, and will be the first precise measurement for 3He at $x>0.4$

• E03-103 data at $W<4$ GeV and $x>0.6$ (resonance region) allows to study EMC effect at large x

• Analysis well underway and data processing almost complete
E03-103 Collaboration

Argonne National Laboratory, Argonne, IL

B. Boillat, J. Jourdan, M. Kotulla, T. Mertens, D. Rohe, G. Testa, R. Trojer
Basel University, Basel, Switzerland

B. Filippone
California Institute of Technology, Pasadena, CA

C. Perdrisat
College of William and Mary, Williamsburg, VA

D. Dutta, H. Gao, X. Qian
Duke University, Durham, NC

W. Boeglin
Florida International University, Miami, FL

M.E. Christy, C.E. Keppel, S. Malace, E. Segbefia, L. Tang, V. Tvaskis, L. Yuan
Hampton University, Hampton, VA

G. Niculescu, I. Niculescu
James Madison University, Harrisonburg, VA

Jefferson Laboratory, Newport News, VA

B. Clasie, J. Seely
Massachusetts Institute of Technology, Cambridge, MA

J. Dunne
Mississippi State University, Jackson, MS

V. Punjabi
Norfolk State University, Norfolk, VA

A.K. Opper
Ohio University, Athens, OH

H. Nomura
Tohoku University, Sendai, Japan

M. Bukhari, A. Daniel, N. Kalantarians, Y. Okayasu, V. Rodriguez
University of Houston, Houston, TX

F. Bennmokhtar, T. Horn
University of Maryland, College Park, MD

University of Virginia, Charlottesville, VA

R. Asaturyan, H. Mkrtchyan, T. Navasardyan, V. Tadevosyan
Yerevan Physics Institute, Armenia

S. Connell, M. Dalton, C. Gray
University of the Witwatersrand, Johannesburg, South Africa