New Measurement of the EMC Effect In 3He and 4He

Jason Seely
Massachusetts Institute of Technology
for the
E03-103 Collaboration
Jefferson Lab, Hall C

DIS 06
Tsukuba, Japan
April 22, 2006
\[
\frac{\sigma_{A}}{\sigma_{2}} = \frac{F_{2}^{A}}{F_{2}^{2}}
\]
The EMC effect has been with us for over 20 years.

Much experimental and theoretical effort has been devoted to understanding the details.
EMC (hollow circles)
SLAC (solid circles)
BCDMS (hollow squares)

NUCLEAR BINDING
FERMI MOTION
EXCESS PIONS

\(\frac{\sigma_{Fe}}{\sigma_D} \) vs. \(x \)
The EMC effect has been with us for over 20 years.

much experimental and theoretical effort has been devoted to understanding the details of the effect.

most of effort has been focused on heavy targets (C, Fe, Au...)

There is a dearth of data for light targets.

^4He – well studied by SLAC, but need more precision

^3He – low x studied at HERMES, no data for $x>0.4$

^3H – no data
\(^4\text{He}\)

Anomously tightly bound
well studied at SLAC: need more precision
^3He

low x data from HERMES, but no data for $x>0.4$
Jefferson Lab
Jefferson Lab
6 GeV electron accelerator
Newport News, VA
HMS: QQQD spectrometer

6 mStr acceptance

+/- 8% momentum bite
E03-103: EMC effect in light nuclei

Measurement of inclusive electron scattering cross section from H, \(^2\)H, \(^3\)He, \(^4\)He, B, C, Cu, Au

5.67 GeV electron beam

Single-arm measurement in HMS
Kinematic Coverage:

Data taken at six angles

main EMC extraction done using large angle (highest Q^2) data.

other angles will provide detailed Q^2 dependence study.
coverage for $x > 1$
E03-103 kinematics not very DIS – need to be able to compare to other measurements...need a scaling variable that scales over larger Q^2 range.

$$\xi = \frac{2x}{1 + \sqrt{1 + 4m^2x^2/Q^2}}$$

$\xi \rightarrow x$ in the Björken limit
\(\xi \) scaling

Structure functions show scaling in \(\xi \) below
\(W^2 = 4 \text{ GeV}^2, Q^2 = 4 \text{ GeV}^2 \)
\(\xi \) Scaling in E03-103 (\(^2\text{H}\))

\[W^2 = 2 \, \text{GeV}^2 \text{ at } \xi \sim 0.8 \text{ quasieastic peak suppressed for highest } Q^2 \text{ settings.} \]
ξ Scaling in E03-103 (12C)
The dependence of F_2 ratio (Q^2 at $x=0.6$)

- $W^2 = 2 \text{ GeV}^2$
- $W^2 = 4 \text{ GeV}^2$

Data from:
- E03-103, 2.0 (GeV/c)2
- E03-103, 3.9 (GeV/c)2
- E03-103, 4.5 (GeV/c)2
- E03-103, 5.0 (GeV/c)2
- J. Gomez et al., 1994 (SLAC)
EMC effect in ^{12}C
EMC effect in 4He

\begin{itemize}
 \item E03-103, average
 \item J. Gomez et al., 1994(SLAC)
\end{itemize}
EMC effect in ^4He as large as in ^{12}C
Neutron Excess:

Currently using SLAC Parameterization:

\[
\frac{\sigma^A}{\sigma^D} / \left(\frac{\sigma^A}{\sigma^D} \right)_{is} = \frac{\left(Z + N \frac{F_{2n}^n}{F_{2p}^p} \right)}{0.5A \left(1 + \frac{F_{2n}^n}{F_{2p}^p} \right)}
\]

F2n/F2p = 1 – 0.8x

Data were taken on H and \(^2\)H at all settings in order to determine F2n/F2p for our kinematics (in progress)
EMC effect in 3He
Systematics:

<table>
<thead>
<tr>
<th>Source</th>
<th>Absolute Uncertainty</th>
<th>Relative Uncertainty</th>
<th>$\delta\sigma/\sigma(%)$</th>
<th>$\delta R/R(%)$ point-to-point</th>
<th>$\delta R/R(%)$ scale</th>
<th>$\delta R/R(%)$ Statistical</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMS Momentum</td>
<td><0.1%</td>
<td>0.01%</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Beam Energy</td>
<td><0.1%</td>
<td><0.02%</td>
<td>0.2</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>θ</td>
<td>0.5mr</td>
<td>0.2mr</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>t_D</td>
<td>0.5%</td>
<td></td>
<td>0.5</td>
<td>-</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>t_{He}</td>
<td>1.0%</td>
<td></td>
<td>1.0</td>
<td>-</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Charge</td>
<td>0.4%</td>
<td>0.3%</td>
<td>0.5</td>
<td>0.42</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Target Boiling</td>
<td><1.0%</td>
<td>0.5%</td>
<td><1.0</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Endcap Subtraction</td>
<td><1.0%</td>
<td>0.2%</td>
<td><1.0</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Acceptance</td>
<td>1.0-2.0%</td>
<td>0.2%</td>
<td>1.0-2.0</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Radiative Corrections</td>
<td>2.0%</td>
<td>0.5%</td>
<td>2.0</td>
<td>0.3</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Detector Efficiency</td>
<td>0.5%</td>
<td>0.2%</td>
<td>0.5</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Deadtime Correction</td>
<td><0.5%</td>
<td>0.2%</td>
<td><0.5</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>2.7-3.3</td>
<td>0.7%</td>
<td>1.3</td>
<td>0.5-0.7</td>
</tr>
<tr>
<td>E139</td>
<td></td>
<td></td>
<td>3.3-3.7</td>
<td>1.6%</td>
<td>2.2</td>
<td>1.0-2.2</td>
</tr>
</tbody>
</table>

Table 4: Systematic uncertainties in the ratio σ_{He}/σ_{H}, compared to E139 uncertainties (for 4He).

Measurement limited by systematic error

target thickness

charge normalization
Conclusions:

E03-103 has made a precision measurement of the EMC effect in 3He and 4He.

Improved precision
EMC effect in 4He is as large as the effect in 12C.

First ever measurement on 3He at $x>0.4$.

Work is currently underway on radiative corrections model, and neutron excess correction.

Final results coming soon.