Future Program of Short-Range Correlations and the EMC Effect

- > Linear Correlation between SRC and EMC
- > Hypothesis: both effects are related to highmomentum (high-virtuality) nucleons
- > Are high-momentum (virtuality) nucleons modified?
- Future studies

Correlations Between EMC and SRC!

SRC

- ➤ High local density
- ➢ High nucleons momenta

EMC

Is EMC related to highmomentum nucleons? SLAC data

L. Frankfurt, M. Strikman, D. Day, M. Sargsian, Phys. Rev. C48, 4251 (1993) Q²=2.3 GeV/c²

J. Gomez *et al.*, Phys. Rev. **D**49, 4348 (1983) Q²=2,5,10, 15, GeV/c² (averaged)

Explore Connection between EMC and SRC

Nucleons Modified at High Momentum

M. Paolone et al. PRL 105,072001 (2010)

Dependence of Nucleons SF on Momenta

Dependence on

- > Models
- Nucleon's momentum and x_B
- Nucleon's momentum, not x_B

Experimental Program at JLAB

Compare F_2 in DIS off high-momentum nucleons to F_2 of free nucleons E12-11-107 – TAU, ODU, MIT JLAB

Experimental method

- > Use deuteron as a target in DIS
- Tag high-momentum nucleons with high-momentum recoiling ("spectator") partner fast, backwards recoiling nucleon as in SRC using the reaction d(e,e'N_s)

Experimental Method (cont.)

Minimize experimental and theoretical uncertainties by measuring cross-section ratios

$$\frac{\sigma_{DIS}(x_{high}^{'}, Q_{1}^{2}, \vec{p}_{s})}{\sigma_{DIS}(x_{low}^{'}, Q_{2}^{2}, \vec{p}_{s})} \cdot \frac{\sigma_{DIS}^{free}(x_{low}^{'}, Q_{2}^{2})}{\sigma_{DIS}^{free}(x_{high}^{'}, Q_{1}^{2})} \cdot R_{FSI} = \frac{F_{2}^{bound}(x_{high}^{'}, Q_{1}^{2}, \vec{p}_{s})}{F_{2}^{free}(x_{high}^{'}, Q_{1}^{2})}$$

$$x_{B}^{'} = \frac{Q^{2}}{2p_{\mu}q^{\mu}} \qquad x_{B} = \frac{Q^{2}}{2m_{N}\omega}$$
FSI correction factor

 $x'_{high} \ge 0.45$ $0.25 \ge x'_{low} \ge 0.35$ No EMC is expected x_{B}' vs. x_{B} (Why x'?)

> Use low x' data to study FSI dependence on Q², W'², θ_{pq}

Experimental Setup – Hall C

Large acceptance Detector (LAD)

Kinematic Coverage

Expected Results

Systematic uncertainty (4-7% total)

- SHMS and HMS efficiency and acceptances (1–2%)
- LAD efficiency (3% protons, 5% neutrons)
- > Al walls subtraction (1%)

- > FSI ratio (4%)
- Free nucleons structure functions ratio (1% protons, 4% neutrons)

Second Stage - EMC

Measuring EMC with Tagged High–Momentum Recoil Nucleons LOI–11–104 – TAU, ODU, MIT, JLAB

Basic idea of measurement

- Perform DIS (Q² > 2; W > 2) on high-momentum (vituality) nucleons by tagging the high-momentum recoiling nucleons
- > Remember, almost all high-momentum nucleons have a SRC partner!!
- Measure per-nucleon x-sections (p_s > 275 MeV/c; θ_{pq} > 110°) ratio of ⁴He to deuteron, σ[⁴He(e,e'p_s)]/σ[d(e,e'p_s)], f(0.3 < X_B < 0.6)</p>

Signal

- If EMC depend on virtuality, σ[⁴He(e,e'p_s)]/σ[d(e,e'p_s)] should not depend on x_B
- > Magnitude of ratio should be $a_{2N}(^{4}He/d) \approx 4$

Basic Idea of Measurement (cont.)

Second Measurement

- Ratio of per-nucleon cross section, σ[⁴He(e,e'p_s)]/σ[d(e,e')], at the same kinematic range
- Only σ[⁴He(e,e'p_s)] is tagged by p_s > 275 MeV/c while σ[d(e,e')] is not!

Signal

- Ratio depends on x_B
- Shape similar to universal EMC shape BUT more pronounced

Experimental setup of both measurements will be similar to that of E12–11–107

Summary

- > SRC and EMC are linearly correlated
- We suggest that this correlation is because both phenomena are related to high-momentum nucleons
- > We assume that highly virtual nucleons are modified
- > E12-11-107 is approved to measure at JLAB the ratio of F_2 for highly virtual nucleons to F_2 of free nucleons in the deuteron
- > Use spectator tagging to select highly virtual nucleons in DIS
- > Minimize systematic uncertainties by measuring ratios
- > This is not (yet) an EMC measurement

Summary (cont.)

- LOI-11-104 plans to measure the doubly-tagged per-nucleon cross-sections ratio σ[⁴He(e,e'p_s)]/σ[d(e,e'p_s)] for p_s > 275 MeV/c, θ_{pq} > 110°, and as f(0.3 < X_B < 0.6)</p>
- > LOI-11-104 plans also to measure the singly-tagged per-nucleon cross-sections ratio $\sigma[^{4}He(e,e'p_{s})]/\sigma[d(e,e')]$ in the same conditions
- If the EMC effect is related to highly virtual nucleons, then both measurements will have a very unique signatures
- > A full proposal will be submitted to the JLAB PAC
- > This IS an EMC measurement

Experimental Setup for both measurements