Computing, DAQ and Trigger

Brad Sawatzky

- Upgraded Network
 - $\rightarrow \text{ New fiber tying} \\ \text{SHMS} \leftrightarrow \text{CH} \leftrightarrow \text{HMS}$
 - → Upgraded network switches in SHMS, HMS, CH
 - → New network run to Hall C gas shed
 - remote monitoring, EPICS logging, controls
- Also new CAT6 (copper) runs from SHMS ↔ Hall ↔ CH (multi-function, low V signalling, etc)

- Upgraded Servers
 - → New Fileserver [cdaqfs1]
 - » 6 core, 32 GB, 10TB RAID6 '/home', "system"
 - → New 'Workhorse' [cdaql1]
 - » 20 core, 64GB, 20TB RAID6 'scratch'
 - → New magnet controls [skylla7, cmagnets]
- New console/operator comp. [x4]
 - » Dual monitor displays for shift crew
 - » 4 core, 8 GB
- New big-screen wall monitors for system displays [x2]

- "Best of" existing machines repurposed
 - \rightarrow cdaql2, cdaql4
 - » SHMS, HMS DAQ
 - \rightarrow cdaql5
 - » Moller DAQ
 - \rightarrow cdaql3
 - » alt. 'workhorse' machine
 - » compute, scratch, DB server
 - → all RAID1/RAID6, dual power supply
- New machines RHEL6/RHEL7
 - \rightarrow legacy machines \rightarrow RHEL6
 - \rightarrow keep one machine RHEL5/32
- Compute racks backed by dual highcapacity UPSs

Updated Counting House Consoles

Differences between this image and as-ordered:

- Two new 55" 1080p big displays on the wall
 - instead of the 3 smaller displays shown
- 5 desktop consoles are planned (4 user machines + target computer)
 - 1 on each short leg, 2 along long section
- We'll get a different table than shown in this image

Hall C ERR • Aug 24, 2016

Data Acquisition / Trigger

Thomas Jefferson National Accelerator Facility Hall C ERR • Aug 24, 2016

7

Baseline Trigger Requirements

- Trigger is <u>simple</u>
 - → Based on successful 6 GeV HMS+SOS triggers
 - → 'discrete' NIM logic (no firmware-trigger)
 - » nominal logic signal & gate widths: 40–60 ns
 - → Simple combinatorics For example:
 - » AND of right/left PMTs
 - OR of paddles in each hodoscope plane
 - » Trigger DAQ on 3 of 4 of Scint Planes, etc.

- Rates are modest
 - → Comparable to 6 GeV HMS operation
 - → 10s of kHz (typ.) in individual PMTs
 - → Final trigger rate ~ 2–5 kHz with
 - \rightarrow Deadtimes < 15%
- Data rates are low (by modern standards)
 - → ~ 1 kB/event per spectrometer
 - \rightarrow ~ few MB/sec to disk

SHMS Detector Layout

SHMS/HMS Trigger/Electronics

SHMS / HMS Triggers

- Ultimate triggers in use driven by experimental requirements/request
 - \rightarrow SCIN = 3 of 4 hodoscope planes
 - \rightarrow CER = Cerenkov(s)
 - \rightarrow STOF = S1 + S2
 - →EL-Hi = SCIN + PSh_Hi
 - →EL-Lo = 2/3{SCIN, STOF, PSH_Lo}.AND. CER
 - →EL-Real = EL-Hi + EL-Lo
 - →PION = SCIN .NOT. CER
 - →[etc...]
 - →Pulser/Random trigger
 - » EDTM injection for deadtime monitoring
- Each arm has its own TS
 - \rightarrow Both coincidence and independent/parallel operation available
- NOTE: There is no Calorimeter Sum for SHMS trigger
 - \rightarrow SHMS Pre-Sh sum *does* exist for trigger

Initial Production Config

- Will restore HMS trigger; SHMS has same logical design.
 - → FASTBUS electronics for HMS replaced with FADCs and CAEN 1190 TDCs
 - → A "legacy" NIM trigger will be implemented.
 - → This is our 12 GeV starting point.
- FADCs will provide ADC, TDC (~1 ns res.), and scaler data
- CAEN 1190 TDC: 100 ps res.
- If desired, Calo. FADCs could provide a simple sum, or more sophisticated cluster trigger with latency of ~200—400ns
 - somewhat slow for main trigger, but could be used as a fast clear

[No requests as yet.]

New Inventory

- 4 new VXS crates
 - → primarily used to support FADCs (special J0 backplane bus)
- 640 ch JLab FADC [40 mod]
 - \rightarrow SHMS: ~422 ch / HMS: ~200 ch
- 3072 ch CAEN 1190 TDC [24 mod] → SHMS: ~1200 ch / HMS: ~1200 ch
- 2 New Trigger Supervisor (TS) boards
- 5 New Trigger Interrupt (TI) boards
- 2 Trigger Distribution (TD) boards
 - \rightarrow fans triggers/clocks out to crates
- 2+2 Signal Distribution (SD) board
 - \rightarrow fans triggers/clocks out to FADCs
- 3 Crate Trigger Processor (CTP) boards
- 1 Sub-System Processor (SSP) board
- 'Special' multi-fiber optical cable run SHMS \leftrightarrow HMS \leftrightarrow CH for DAQ

Parallel DAQ Setups

- SHMS Hut
 - → FADC/VXS for calorimeter readout
- HMS Hut
 - → CAEN 1190/VXS for wire chamber readout
- Counting House
 - → 2x VXS crates for SHMS/ HMS hodoscope, calorim 1190 + F250 readout
- Equipment Staging Building
 - → 1190 TDC readout for SHMS + (new) HMS chambers
 - → will move to SHMS Hut along with chambers

DAQ Trigger Status

DAQ Consolidation Underway

- Primary demand has been for independent DAQs (see earlier slide)
 - → Appropriate signals from NIM trigger are patched back to 'standalone', singlecrate DAQs
- Consolidation/integration of the "mini-DAQs" underway
 - \rightarrow Last significant step is completing cabling from CH patch \rightarrow FADCs

- CODA 2.6.2 is presently in use for single-crate systems
 - → CODA 3.x will be tested during integration tests

Compute/DAQ To-Do List

- General
 - → Complete/Repeat clean-up of Counting House operations and electronics rooms
- Complete / Test integration of full single-arm DAQ (SHMS, HMS)
 - \rightarrow Use 'faked' EDTM signal to test dual-arm coincidence DAQ
 - \rightarrow Rates, bandwidth, sustained load tests
 - » Crates \rightarrow Hall C cluster \rightarrow Tape System
- Beamline / Slow controls integration into DAQ
 - → BPM signal readouts
 - → Harp status / controls
 - \rightarrow Raster control / readout
 - → BCM readout
 - → Helicity reporting / gated scalers
 - \rightarrow EPICS variables
 - » Verify all relevant EPICS PVs are in MCC Archiver, screens updated with any changed names, etc
 - » Magnet readbacks interfaced with MCC Archiver?
 - » Target logging
 - » High-voltage logging

Aug/Sept

Misc/Backup Slides

Electronic & Computer Deadtimes

- Examples from "Measurement of R in the Nucleon Resonance
 Region on Deuterium and the Non-Singlet Moments of the
 Nucleon" – Albayrak (E02-109
 Dissertation; 6 GeV)
- Computer live time dominated by FASTBUS readout times.
 - → all now replaced by (much) faster F250s, C1190s, Intel VME computers
- Electronic live times are for the same NIM circuit implemented now.
 - → Note > 99.5% live for pretrigger rates up to 50 kHz

Electron Trigger Efficiency

- Example from "Measurement of R in the Nucleon Resonance Region on Deuterium and the Non-Singlet Moments of the Nucleon" Albayrak (E02-109 Dissertation; 6 GeV)
 - → Primary trigger > 99.8% efficient for HMS
 - \rightarrow SHMS trigger based on same design, equivalent detectors

Figure 4.36: HMS electron trigger efficiency as function of scattered electron energy.

21

Hodoscopes

Cherekovs

Thomas Jefferson National Accelerator Facility Hall C ERR • Aug 24, 2016 23

HMS Shower

Hall C ERR • Aug 24, 2016

SHMS Pre-shower

3.4 FADC Sampling – Charge Accuracy

Hall D FCAL PMT: FEU 84-3

- 10,000 Random height pulses 10-90% full scale of ADC range simulated
- Sampling frequency makes little difference beyond 250MHz at 12bit, providing ~0.1% charge resolution
- PMT pulse shape dominates sample frequency and bit depth of ADC

Page 27

Office of Nuclear Ph

FADC Sampling – Timing Accuracy

Hall D FCAL PMT: FEU 84-3

- Timing algorithm developed & tested by Indiana University for the Hall D forward calorimeter.
- Implemented on the JLab FADC250 hardware achieving <300ps timing resolution on 50% pulse crossing time with varied signal heights.

- Resolution allow reliable information to link calorimeter with tagged electron bunch.

