

CALCULATION REPORT

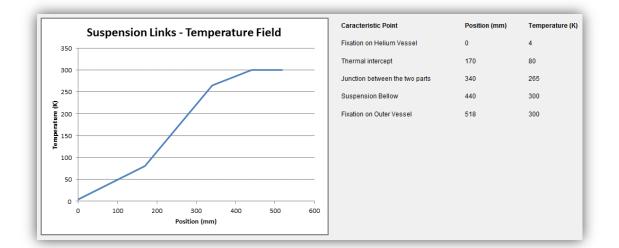
Design of Suspension links

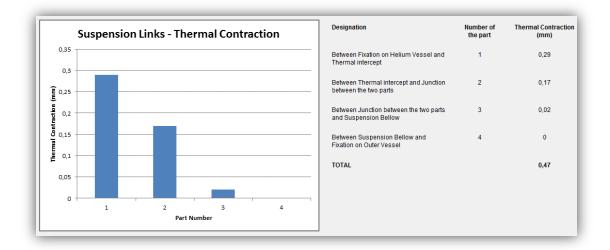
Comparison between several designs of suspension link

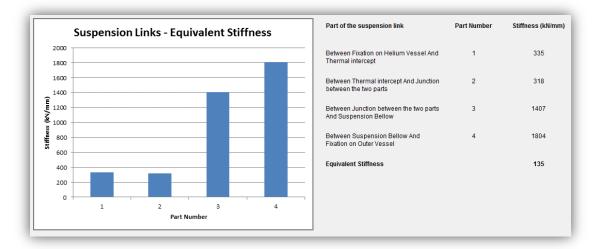
Several solutions are compared:

- Current design without changing the angle of inclination.
- Current design with an optimal angle of inclination (no increasing of tension during cooling) and with a minimal section to insure the mechanical integrity of the suspension link.
- The entire suspension link composed of Ti-6Al-4V with an optimal angle.
- The entire suspension link composed of Nitronic 50 with an optimal angle.

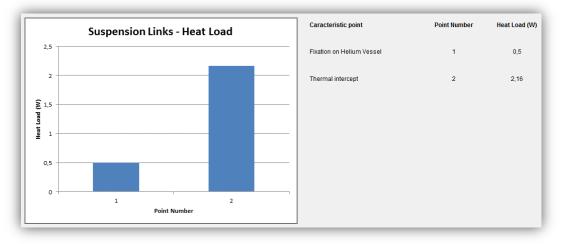
For all these solutions the total length of the suspension link is identical as well as the position of the thermal intercept.


	Current Design (Current angle)	Current Design (Optimal angle)	Ti-6Al-4V Only	Nitronic 50 Only
Angle (°)	22,5	25,35	25,78	29,59
Heat load on Helium Vessel (W)	0,76	0,55	0,59	1,67
Heat Load on Thermal Intercept (W)	3,27	2,36	1,9	5,68
Thermal Contraction (mm)	0,47	0,47	0,52	0,9
Maximum Force in suspension link (kN)	322	230	222	254
Section of Ti-6Al-4V (mm²)	720 (29 x 25)	520 (26 x 20)	560 (28 x 20)	-
Section of Nitronic 50 (mm²)	935 (D = 34,5)	675 (D = 29,3)	-	740 (D = 30,7)

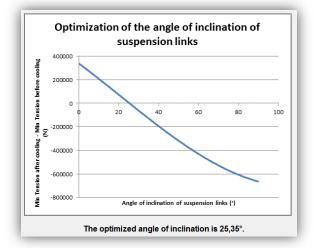

We observe that the best way to decrease the stress in the suspension link consists in changing the angle of inclination. The full Nitronic solution must be avoided because it increases significantly the section and consequently the heat load on helium vessel. The full Ti-6Al-4V solution doesn't decrease significantly the section of the suspension link.

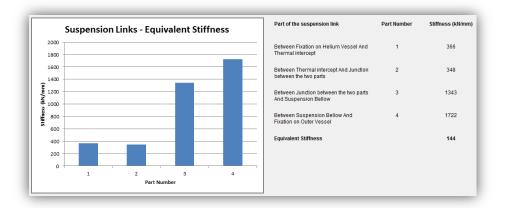


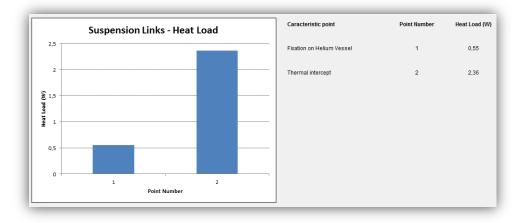
Current Design (Current angle of inclination and current sections)


The following tables and graphs concern the current design of suspension link for an angle of inclination 22,5°. We observe that sections of the suspension link are inefficient.

1° suspension link	Tx (kN)	Ty (kN)	Tz (kN)	T (kN)
1	30	30	17	45
2	-30	30	17	45
3	0	0	0	0
4	0	0	0	0
5	51	51	-30	79
6	-51	51	-30	79
7	-22	-22	-13	33
8	22	-22	-13	33


° suspension link	Tx (kN)	Ty (kN)	Tz (kN)	T (kN)
1	55	55	32	84
2	-55	55	32	84
3	-25	-25	15	39
4	25	-25	15	39
5	77	77	-45	117
6	-77	77	-45	117
7	-47	-47	-28	72
8	47	-47	-28	72


V° suspension link	Tx (kN)	Ty (kN)	Tz (kN)	T (kN)	
1	111	111	65	170	
2	-160	160	94	245	
3	-112	-112	66	172	
4	63	-63	37	97	
5	133	133	-78	204	
6	-182	182	-107	279	
7	-134	-134	-78	205	
8	85	-85	-50	130	



Part of the suspension link	Stress in this part (MPa)	Maximum Allowable Strength (MPa)
Between Fixation on Helium Vessel And Thermal intercept	587	448
Between Thermal intercept And Junction between the two parts	587	448
Between Junction between the two parts And Suspension Bellow	394	345
Between Suspension Bellow And Fixation on Outer Vessel	394	345

Current Design with optimal angle of inclination and optimal sections

×

Tension	in	suspension	links	before	cool	ling

N° suspension link	Tx (kN)	Ty (kN)	Tz (kN)	T (kN)
1	30	30	20	46
2	-30	30	20	46
3	0	0	0	0
4	0	0	0	0
5	49	49	-33	76
6	-49	49	-33	76
7	-19	-19	-13	30
8	19	-19	-13	30

N° suspension link	Tx (kN)	Ty (kN)	Tz (kN)	T (kN)	
1	30	30	20	46	
2	-30	30	20	46	
3	0	0	0	0	
4	0	0	0	0	
5	49	49	-33	76	
6	-49	49	-33	76	
7	-19	-19	-13	30	
8	19	-19	-13	30	

N° suspension link	Tx (kN)	Ty (kN)	Tz (kN)	T (kN)
N Suspension link				
1	79	79	53	124
2	-128	128	86	200
3	-80	-80	54	125
4	31	-31	21	48
5	98	98	-66	154
6	-147	147	-99	230
7	-99	-99	-66	155
8	50	-50	-33	78

Part of the suspension link	Stress in this part (MPa)	Maximum Allowable Strength (MPa)
Between Fixation on Helium Vessel And Thermal intercept	443	448
Between Thermal intercept And Junction between the two parts	443	448
Between Junction between the two parts And Suspension Bellow	341	345
Between Suspension Bellow And Fixation on Outer Vessel	341	345