Measurement of Spin Structure Functions in Hall C

Mark Jones
Jefferson Lab

GDH2004 at ODU
June 2004
Hall C Program

- Spin Structure Functions (SSF)
 - Inclusive measurements
 * SSF in the Nucleon Resonance Region
 E01-006 preliminary data
 * SSF at high Bjorken x
 E03-109 Cond. approved
 - Semi-Inclusive in DIS measurements
 * Spin asymmetries in $(e, e'h)$ \[h = \pi^\pm, K^\pm \]
 PAC26 proposal

- Tools
 - CEBAF Polarized beam
 - Solid Polarized NH$_3$ and ND$_3$ targets
 Target field direction parallel and perpendicular to beam direction
 - Hall C High Momentum Spectrometer (HMS) for E01-006
 - Non-magnetic detector, BETA (Big Electron Telescope Array)
 for E03-109 and PAC26 proposal
Resonances Spin Structure (RSS)

Precision Measurement of the Nucleon Spin Structure Functions
in the Region of the Nucleon Resonances

Spokesmen: Oscar A. Rondon (U. of Virginia) and Mark K. Jones (Jefferson Lab)

- Measure proton and deuteron spin asymmetries \(A_1(W, Q^2) \) and \(A_2(W, Q^2) \)
at momentum transfer \(Q^2 \approx 1.3 \) GeV\(^2\) and invariant mass \(0.8 < W < 2 \) GeV.

- Extract \(g_1 \) and \(g_2 \) structure functions and study:
 - \(W \) dependence
 - Onset of polarized local duality
 - twist-3 effects in \(d_2 \) matrix element
• Final state mass region $W < 2$ GeV (resonances) dominates kinematic plane for four-momentum transfer $Q^2 < 5$ GeV2
 - few data in high Bjorken x region
 - DIS-resonances connection (duality)

• Good W resolution required for resonances (Not available at HEP labs - SLAC, HERMES, SMC)
 - JLab Hall C High Momentum Spectrometer (HMS) has $\Delta W < 30$ MeV
Quantitative tests of duality of unpolarized SF (SLAC, JLab) and to a lesser degree polarized SF (SLAC, Hermes, JLAB). (Talk by S. Liuti)

- SLAC 143: g_1 from A_\parallel assuming $A_2 = 0$
- Resolution in W too wide for local duality test
- Global duality ratio of integrals has large error bars.
• Polarized and unpolarized structure functions share common interpretation:

 – DIS: Parton model and Operator Product Expansion (OPE)

 \[A_1(x) \approx \frac{g_1(x)}{F_1(x)} = \frac{\sum e_i^2 \Delta q_i}{\sum e_i^2 q_i} \]

 – Resonances: forward virtual Compton scattering

 \[A_1(Q^2, \nu) = \frac{\sigma_{1/2}^T - \sigma_{3/2}^T}{\sigma_{1/2}^T + \sigma_{3/2}^T} = \frac{M \nu G_1(Q^2, \nu) - Q^2 G_2(Q^2, \nu)}{W_1(Q^2, \nu)} \]

 – Connection: scaling limit

 \[\lim_{Q^2, \nu \to \infty} M \nu G_1(Q^2, \nu) = g_1(x) \quad \lim_{Q^2, \nu \to \infty} MW_1(Q^2, \nu) = F_1(x) \]
Electron-Nucleon Polarized Scattering

\[\Delta \sigma(\theta, \theta_N, \phi) = \frac{d^2 \sigma^{\uparrow\uparrow}}{d\Omega dE'} - \frac{d^2 \sigma^{\uparrow\downarrow}}{d\Omega dE'} \]

\[\Delta \sigma(\theta_N = 0) = \frac{4 \alpha^2 E'}{Q^2 E} \left\{ (E + E' \cos \theta)MG_1 - Q^2 G_2 \right\} = 2\sigma_u A_{||} \]

\[\Delta \sigma(\theta_N = \frac{\pi}{2}) = \frac{4 \alpha^2 E'}{Q^2 E} E' \sin \theta \cos \phi (MG_1 + 2EG_2) = 2\sigma_u A_{\perp} \]
Relation between A_1, A_2 and A_{\parallel}, A_{\perp}

- Clean extraction of A_1, A_2 for protons and deuterons is crucial.
- Solution: measure A_{\parallel}, A_{\perp} on polarized ammonia

$$A_1 = \frac{C}{D}(A_{\parallel} - dA_{\perp})$$

$$A_2 = \frac{C}{D}(c' A_{\parallel} - d' A_{\perp})$$

- Kinematic variables $C, c', d, d'(E, E', \theta), D(E, E', \theta, R)(R = \sigma_L/\sigma_T)$
- $d' \approx 1, c' \approx d \leq 1$ (at RSS kinematics)
- Comparable systematic errors for both A_{\parallel}, A_{\perp} is important.
SSF g_1, g_2 and Spin Asymmetries A_1, A_2

- g_1, g_2 can be extracted directly from A_\parallel, A_\perp or A_1, A_2

\[
g_1 = \frac{F_1}{1 + \gamma^2}(A_1 + \gamma A_2)
\]

\[
g_2 = \frac{F_1}{1 + \gamma^2}(\frac{A_2}{\gamma} - A_1); \quad \gamma^2 = \frac{Q^2}{\nu^2}
\]

- Need $F_1 = F_2(1 + \gamma^2)/2x/(1 + R)$ in the resonance region.
 Measurement of F2 and R in resonance region (see E. Christy’s talk)

- Also can get g_1, g_2 directly from cross section differences:

 F_2 and R not needed

- g_1 can be extracted from A_\parallel and SSF model for g_2
• Raw Asymmetry, \(\epsilon = \frac{N^+ - N^-}{N^+ + N^-} \)
in which \(N^+ \), \(N^- \) are the number of counts normalized by the
charge and deadtime for opposite beam helicities.

• Parallel and perpendicular asymmetries

\[
A_{\parallel, \perp} = \frac{1}{C_N f_{rc}} \left(\frac{\epsilon}{f P_b P_t} - C_D \right) + A_{rc}
\]

- \(f = \) dilution factor; ratio of rates from polarized nucleons to all
 nucleons
- \(P_b, P_t = \) beam and target polarizations
- \(C_N, C_D = \) corrections of N in ammonia
- \(f_{rc}, A_{rc} = \) radiative corrections

Use code for polarized scattering in resonances
(I. Akusevich)
- Incident beam rastered in circular pattern with 2cm diameter.
- Before target, chicane magnets bend the beam to compensate for target field to make beam horizontal at target..
- Polarized target rotated so target field direction either parallel or perpendicular to beam direction.
Kinematic coverage

- Beam Energy = 5.755 GeV
- Electron scattering angle 13.15°
- HMS central momentum settings of 4.7 and 4.1 GeV/c
- $\langle Q^2 \rangle = 1.3 \text{ GeV}^2$ over W range of 0.8 to 2.0 GeV.
Polarized Target

- Microwave Input
- NMR Signal Out
- Refrigerator
- Liquid Helium Magnet (inside coil)
- NMR Coil
- To Pumps
- LN2

Diagram:
- Electron Beam
- Target (inside coil)
- 1° K

Graph:
- Polarization (% Red=Top, Blue=Bottom)
- Proton
- Deuteron
- Run Number - 40000
Beam Characteristics

- Beam current
 - 150 - 200 nA for ND$_3$, C, He
 - 85 - 100 nA for NH$_3$

- Beam polarization measured in the Hall with Moller
12C yield compared to Monte Carlo

Parallel field

Perpendicular field

Data at $p_{\text{cent}} = 4.7$ GeV/c
Monte Carlo
Data at $p_{\text{cent}} = 4.0$ GeV/c
Dilution factors

Preliminary assuming 50% packing fraction

- need to determine packing fraction for target cell (8 in total)
- Packing fraction between 0.5 to 0.6 determined by ratio on ammonia to carbon rates.
• Preliminary dilution factor (same packing fraction for all targets).

• Not applied: Radiative corrections, individual packing fractions, N asymmetry.
<table>
<thead>
<tr>
<th>Source</th>
<th>$^{15}NH_3$</th>
<th>$^{15}ND_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen polarization</td>
<td><1%</td>
<td>1%</td>
</tr>
<tr>
<td>Radiative corrections</td>
<td>2%</td>
<td>3%</td>
</tr>
<tr>
<td>Beam Polarization</td>
<td>1.5%</td>
<td>1.5%</td>
</tr>
<tr>
<td>Target polarization</td>
<td>2.5%</td>
<td>4%</td>
</tr>
<tr>
<td>Dilution factor</td>
<td>3%</td>
<td>3%</td>
</tr>
<tr>
<td>Pions, deadtime</td>
<td>1%</td>
<td>1%</td>
</tr>
<tr>
<td>Errors from R and F2</td>
<td>3%</td>
<td>3%</td>
</tr>
<tr>
<td>Total error</td>
<td>5.5%</td>
<td>6.8%</td>
</tr>
</tbody>
</table>
Extracted A_{1p} and g_{1p}

Use hall C fit to F_{2p} and R
Spin Asymmetries on the Nucleon Experiment

U. Basel, Florida International U., Hampton U., IHEP Protvino, Norfolk State U., Rensselaer Polytechnic I.,
Temple U., TJNAF, U. of Virginia, College of William & Mary, Yerevan Physics I.

Spokesmen: Oscar A. Rondon (U. of Virginia), Zein-Eddine Meziani (Temple U.) and Seonho Choi (Temple U.)

- Measure inclusive electron scattering spin asymmetries, A_{\parallel} and A_{\perp}, on NH_3 target. Two beam energies: 4.8 and 6 GeV so large kinematic range
 - $2.5 < Q^2 < 6.5$ GeV2
 - $0.3 < x < 0.8$

- Extract proton $g_2(x, Q^2)$ and $A_1(x, Q^2)$

- Study x and Q^2 dependence, twist-3 effects, moments of g_2 and g_1,
 comparison with Lattice QCD predictions,
 test polarized local duality for $W > 1.4$ GeV.
Experimental Setup

Target
- UVa NH3 target
- 5 T field

Beamline
- Chicanes
- SEM
- He Bag

Electron Arm
- BETA

Background Studies
- HMS

\[\theta_{\text{BETA}} = 40^\circ \]
\[\theta_N = 80^\circ \]
\[\theta_N = 180^\circ \]
\[\theta_{\text{HMS}} = 35-45^\circ \]
Big Electron Telescope Array (BETA)

- Lead Glass Calorimeter
 - $\Delta E/E = 5\%/\sqrt{E}$
 - Large solid angle (194msr)
 - Highly segmented, 1744 blocks (4 x 4 x 40cm)

- Gas Cerenkov
 - π/e separation, 1000:1 rejection factor

- Lucite hodoscope array
 - Redundant PID, Tracking info when combined with Calo.
Kinematic coverage with two beam energies
Expected Results for proton g_2 and A_1
Expected Results x and Q^2 dependence
Semi-Inclusive Spin Asymmetries on the Nucleon Experiment

Spokesmen: P. Bosted (Jlab), D. Day (U. of Virginia), X. Jiang (Rutgers); M. Jones (JLab)

- Measure proton and deuteron semi-inclusive longitudinal spin asymmetries in polarized DIS reactions $p(e, e'h)$ and $d(e, e'h)$ for $h = \pi^\pm, K^\pm$ at $1.2 < Q^2 < 3.1$ GeV2, $0.12 < x < 0.43$, with hadrons carrying $0.5 < z(= E_h/\nu) < 0.7$ of the energy transfer ν

- Spin flavor decomposition with special emphasis on NLO spin flavor decomposition to extract $\Delta u_v, \Delta d_v$ and $\Delta \bar{u} - \Delta \bar{d}$ based on measurement of combined asymmetry, $A_{1N}^{\pi^+ - \pi^-}$. Christova and Leader PLB 468 (1999), NPB 607 (2001)

- Examine deviation from factorization by comparing combined asymmetry, $A_{1N}^{\pi^+ + \pi^-}$ with the inclusive asymmetry, A_{1N}.
- Electrons detected in BETA at 30°
- Hadrons detected in HMS at 10.8° and $p_{cent} = 2.7$ GeV/c
 - HMS had ± 10% momentum bite
 - Kaon PID by hit in aerogel but not gas cerenkov
 - Pion PID by hit in aerogel and gas Cerenkov
 - Positrons eliminated by energy in HMS calorimeter.
- Longitudinally polarized target of NH$_3$ and LiD.
Kinematic coverage
In leading order, the hadron production cross sections factorize

\[A^h_{1N}(x, Q^2, z) = \frac{\sum_f e_f^2 \Delta q_f(x, Q^2) \cdot D^h_f(z, Q^2)}{\sum_f e_f^2 q_f(x, Q^2) \cdot D^h_f(z, Q^2)}. \]

In well defined \(z \)-bin, then each asymmetry can be related to quark polarization, e.g.:

\[A^\pi_{1p}(x, z) = \frac{4\Delta u + \Delta d + (4\Delta \bar{u} + \Delta d) \lambda_\pi + 2\Delta s \xi_\pi}{4u + d + (4\bar{u} + d) \lambda_\pi + 2s \xi_\pi} \]

\[\lambda_\pi(z) = \frac{D^-_\pi(z)}{D^+_\pi(z)} \]

\[\xi_\pi(z) = \frac{D^\pi_s(z)}{D^\pi_\pi(z)} \]

are ratios of fragmentation functions (FF).

- Ratios of FF better known than FF themselves.

- Measure 10 double-spin asymmetries

\[\vec{A} = \left(A^\pi_{1p}, A^\pi_{1d}, A^K_{1p}, A^K_{1d}, A_{1p}, A_{1d} \right) \]

and the extract 5 quark polarization

\[\vec{Q} = \left(x\Delta u, x\Delta d, x\Delta \bar{u}, x\Delta d, xs \right) \]
Flavor Decomposition

- GRSV 2000
- BB
- Positivity limit

Data points:
- Projected JLab data
\[A_{1p}^{\pi^+\pm\pi^-}(x, Q^2, z) = \frac{\Delta \sigma_p^{\pi^+}}{\sigma_p^{\pi^+} + \sigma_p^{\pi^-}} \pm \frac{\Delta \sigma_p^{\pi^-}}{\sigma_p^{\pi^+} + \sigma_p^{\pi^-}} \]

\[A_{1d}^{\pi^+\pm\pi^-}(x, Q^2, z) = \frac{\Delta \sigma_d^{\pi^+}}{\sigma_d^{\pi^+} + \sigma_d^{\pi^-}} \pm \frac{\Delta \sigma_d^{\pi^-}}{\sigma_d^{\pi^+} + \sigma_d^{\pi^-}} \]

Polarized light sea asymmetry

\[
\begin{align*}
A_{1p}^{\pi^+ - \pi^-} &= \frac{\Delta \sigma_{p}^{\pi^+} - \Delta \sigma_{p}^{\pi^-}}{\sigma_{p}^{\pi^+} - \sigma_{p}^{\pi^-}} = \frac{4\Delta u_v - \Delta d_v}{4u_v - d_v}, \\
A_{1d}^{\pi^+ - \pi^-} &= \frac{\Delta \sigma_{d}^{\pi^+} - \Delta \sigma_{d}^{\pi^-}}{\sigma_{d}^{\pi^+} - \sigma_{d}^{\pi^-}} = \frac{\Delta u_v + \Delta d_v}{u_v + d_v}.
\end{align*}
\]

Therefore:

\[
\begin{align*}
(\Delta u_v)_{LO} &= \frac{1}{5} \left[(4u_v - d_v) \cdot A_{1p}^{\pi^+ - \pi^-} + (u_v + d_v) \cdot A_{1d}^{\pi^+ - \pi^-} \right] , \\
(\Delta d_v)_{LO} &= \frac{1}{5} \left[4 (u_v + d_v) \cdot A_{1d}^{\pi^+ - \pi^-} - (4u_v - d_v) \cdot A_{1p}^{\pi^+ - \pi^-} \right] , \\
(\Delta u_v - \Delta d_v)_{LO} &= \frac{1}{5} \left[2 (4u_v - d_v) \cdot A_{1p}^{\pi^+ - \pi^-} - 3(u_v + d_v) \cdot A_{1d}^{\pi^+ - \pi^-} \right].
\end{align*}
\]

From the inclusive DIS data, we have:

\[
g_1^p(x, Q^2) - g_1^n(x, Q^2) = \frac{1}{6} \Delta q_3(x, Q^2) \big|_{LO},
\]

the non-singlet \(\Delta q_3 \) is defined as:

\[
\Delta q_3(x, Q^2) \equiv (\Delta u + \Delta \bar{u}) - (\Delta d + \Delta \bar{d}).
\]

The polarized light sea asymmetry can be extracted through:

\[
(\Delta \bar{u} - \Delta \bar{d}) \big|_{LO} = 3(g_1^p - g_1^n) \big|_{LO} - \frac{1}{2} (\Delta u_v - \Delta d_v) \big|_{LO}.
\]

A similar relation holds at the NLO.
Polarized light sea asymmetry

\[x \Delta u_v \]
\[x \Delta d_v \]
\[x (\bar{u} + \bar{d}) \text{ CTEQ5M} \]

HERMES $Q^2 = 2.5 \text{ GeV}^2$
SMC $Q^2 = 10.0 \text{ GeV}^2$

This experiment
fixed-z purity
sys. err. C.-L.
Christova-Leader
AAC-03
$Q^2 = 2.5 \text{ GeV}^2$
Comparison between Inclusive and Semi-Inclusive
Summary of Hall C spin program

- RSS experiment measured A_\parallel and A_\perp in inclusive electron scattering on protons and deuterons
 - Extract g_1 and g_2 at $Q^2 = 1.3$ GeV2 and $0.8 < W < 2.0$
 - Finished analysis by end of 2004

- Approved experiment to measure A_\parallel and A_\perp in inclusive electron scattering on proton with large acceptance detector (BETA)
 - Extract g_1 and g_2 in range $2.5 < Q^2 < 6.5$ and $0.3 < x < 0.8$
 - Tentatively scheduled to run at end of 2006

- Proposed experiment to measure $A_{1N}^{h\pm}$ for SIDIS reactions $p(e, e'h)$ and $d(e, e'h)$ for $h = \pi^\pm, K^\pm$ for protons and deuterons.
 - $1.2 < Q^2 < 3.1$ GeV2, $0.12 < x < 0.43$, $0.5 < z < 0.7$
 - Spin flavor decomposition
 - “Test” of validity of factorization by checking if $A_{1N}^{\pi^+ + \pi^-}$ equals the inclusive asymmetry, A_{1N}.