SANE Analysis beakdown

Goals:

- DIS spin structure functions g_1, g_2 , moments, matrix elements
- Elastic form factors ratios
- Spin asymmetries in the resonances

Stages:

- Charge normalized, dead time (and pion, e+/e- pairs corrected for spin structure) electron yields for each helicity: $Y^+ = N^+/Q^+$, $Y^- = N^-/Q^-$
 - BETA events
 - Detector energy and position calibrations
 - BigCal for spin structure and form factors:
 cluster identification, position, timing
 - Cherenkov, Lucite and Tracker for spin structure
 timing alignments, *x* position (Lucite)
 - Tracking from BigCal to target through target field
 - pair background identification with Tracker for spin structure
 - Quality control:
 - run list database, run selection (online run sheets, hclog, channel archive)
 - beam position studies (raster cuts for 80° data if time cuts, tracking to target does not clean up background, ...)
 - charge corrected yields
 - kinematics binning
 - HMS events
 - reconstruction with target field
 - parallel
 - 80°
- Raw count or yield asymmetries $A_{\text{raw}} = (Y^- Y^+) / (Y^- + Y^+)$
- Measured asymmetries A_{para} , $A_{80} = A_{\text{raw}} / [f(pf) P_b P_t]$; A_{elastic}
 - Off-line beam polarization by run periods Moller and status of half-wave plate
 - Off-line target polarizations run by run
 - Packing fractions pf and dilution factors f by target cup only for spin structure
 - HMS C, C+He target runs, helicity independent NH₃ data
 - comparison with mc_hms_single montecarlo
 - Combine single arm 4.7 GeV 80° and 5.9 GeV 80°, same for parallel
- Background asymmetries

- \circ e+/e- dilution and contamination
- o radiative corrections
- Physics asymmetries
 - $\circ A_1, A_2(A_{\text{para}}, A_{80})$
 - BETA DIS data:
 - combine measured asymmetries, including out-of-plane angle factors, *R* unpolarized structure function
 - fit and extrapolate to x = 1
 - <u>HMS resonances data</u>: fit A_1, A_2 with resonant shapes, compare to *RSS*
 - $\underline{A}_{\text{elastic}}$: extract form factor ratio at two momentum transfers
- Spin structure functions g_1, g_2
 - Combine with F_1 unpolarized s.f.
 - <u>BETA</u>
 - $g_1, g_2(x)$ at constant Q^2 : Nachtmann moments, matrix elements, models, pQCD
 - $g_1, g_2(Q^2)$ at fixed *W* or *x*: evolution, global fits
 - <u>HMS DIS data</u>: extend *RSS* DIS range to lower *x*; improve extrapolation errors

Underlined: potential thesis topics