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Appendix A

Asymmetry Extraction

The difference of cross sections of opposite spin directions is

∆σ =
∑
s′

[
d2σ

dΩdE′
(k, s, P, S; k′, s′)− d2σ

dΩdE′
(k, s, P,−S; k′, s′)

]
=

8mα2E′

q4E
{[(q · S)(q · s) +Q2(s · S)]MG1

+Q2[(s · S)(P · q)− (q · S)(P · s)]G2

M
},

(A.1)

where kµ is the 4-momentum of the incoming electron, k′µ is of the scattered, Pµ

is the initial 4-momentum of the proton, Sµ is the initial covariant spin 4-vector

of the proton, sµ is of the incoming electron, and s′µ is of the outgoing electron.

Other definition is the same as ep scattering process in the Introduction. In

this context G1 and G2 are the spin structure functions, where G1 = g1
M2ν

and

G2 = g2
Mν .

Fig. A.1 shows the target coordinate in the lab frame. The target is posi-

tioned at the origin, and the beam direction is defined to follow z-axis. The

x-axis points at the BETA side, i.e. the beam left, therefore HMS is in the

opposite side. This detector direction can be controlled by ϕ. Actually, HMS ϕ
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Figure A.1: Coordinate system of the target [1]

is defined already in this manner, i.e. ϕ ≈ 180◦. After some algebra, following

Ref. [1],

∆σ =
−4α2E′

Q2E

[
(E cosα+ E′ cos Θ)MG1 + 2EE′(cos Θ− cosα)G2

]
. (A.2)

As cos Θ is obtained by other angles like

cos Θ = sinϑ sinα cos(β − ϕ) + cosϑ cosα, (A.3)

the parallel setting, where target spin is directing 180◦ from the beam direction,

has

α = 180◦, β = 0, cos Θ = − cosϑ, cosα = −1. (A.4)

So, ∆σ180, the parallel setting cross section difference of ∆σ, is

∆σ180 =
−4α2E′180
Q2

180E180
[−(E180 + E′180 cosϑ180)MG1 +Q2

180G2], (A.5)
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where subscript 180 means the kinematic variable from the parallel setting.

Likewise the near-pependicular setting, where target spin is directing 80◦ from

the beam direction, has

α = 80◦, β = 0, cos Θ = sinϑ sin 80◦ cosϕ+ cosϑ cos 80◦, cosα = cos 80◦. (A.6)

∆σ80, the near-perpendicular setting cross section difference of ∆σ, is

∆σ80 =
−4α2E′180
Q2

180E180
[(E80 cos 80◦

+ E′80(sinϑ80 cosϕ80 sin 80◦ + cosϑ80 cos 80◦))MG1

+ 2E80E
′
80(sinϑ80 cosϕ80 sin 80◦

+ cosϑ80 cos 80◦ − cos 80◦)G2],

(A.7)

where subscript 180 means the kinematic variable from the near-perpendicular

setting. These cross section difference is divided by two times of the unpolarized

cross section, which is

σunpol. ≡ d2σunpol.

dΩdE′
=

2α2E′

Q2E

F1

MD′
, (A.8)

where D′ = 1−ε
1+εR as ε defined in Eq. (??), while F1 and R are unpolarized

structure functions, to get the asymmetries.

The kinematics of parallel and near-perpendicular asymmetries are different

for SANE HMS resonance region, though their W , Q2, xBj , and ν are almost

same, with maximum offset of eachW bin is 3%. So relation between (A180, A80)

and (g1, g2) and also (A1, A2) should be carefully examined. First, (A180, A80)

and (g1, g2) have the following relation:

A180 =
−D′180
F1,180

[−E180 + E′180 cosϑ180
E180 − E′180

g1 +
Q2

180

(E180 − E′180)2
g2], (A.9)

A80 =
−D′80
F1,80

[
E80 cos 80◦ + E′80(sinϑ80 cosϕ80 sin 80◦ + cosϑ80 cos 80◦)

E80 − E′80
g1

+
2E80E

′
80(sinϑ80 cosϕ80 sin 80◦ + cosϑ80 cos 80◦ − cos 80◦)

(E80 − E′80)2
g2].

(A.10)
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Second, (g1, g2) and (A1, A2), with average F1 and γ, have the following:

g1 =
F1

1 + γ2
(A1 + γA2), (A.11)

g2 =
F1

1 + γ2
(−A1 +

A2

γ
) (A.12)

Above equations can be inverted as 2x2 matrices to get reverse relation. But

the usual relation between (A180, A80) and (A1, A2) becomes ambiguous. So, it

is not good to use the following:

A‖ = D(A1 + ηA2), (A.13)

A⊥ = d(A2 − ζA1), (A.14)

though they are usual formulae when the kinematics are completely same. In-

stead we can use the new relations keeping track of variable of each setting. All

the calculation followed it, and the errors were propagated using it.
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