Simplified Expressions to get A_1 and A_2 from A_{80} and A_{180} in SANE O. A. Rondon

The formulas for $A_{1,2}(A_{80}, A_{180})$ in Jonathan Mulholland's tech. note¹ can be simplified to depend on the measured kinematic quantities *E*, *E*', θ and ϕ as much as possible, instead of using calculated variables like Q^2 and ν . There are many cancellations that reduce the expressions to these simple forms:

$$A_{1} = \frac{1}{D'} \left(\frac{E - E' \cos \theta}{E + E'} A_{180} + \frac{E' \sin \theta \cos 80^{\circ}}{(E + E') \cos \phi \sin 80^{\circ}} A_{180} + \frac{E' \sin \theta}{(E + E') \cos \phi \sin 80^{\circ}} A_{80} \right)$$
$$A_{2} = \frac{1}{D'} \frac{1}{2E} \left(\sqrt{Q^{2}} A_{180} - \sqrt{Q^{2}} \frac{(E - E' \cos \theta) \cos 80^{\circ}}{E' \sin \theta \cos \phi \sin 80^{\circ}} A_{180} - \sqrt{Q^{2}} \frac{E - E' \cos \theta}{E' \sin \theta \cos \phi \sin 80^{\circ}} A_{80} \right)$$

These expressions match the formulas in eq. (12) of *RSS* tech. note² on the spin asymmetries A_1 and A_2 and measured asymmetries $A_{80}A_{180}$ when 80° is replaced by -90°, according to the SANE vs *RSS* angle conventions.

It is easy to see that the ϕ -dependent factor in front of A₁₈₀ is the same as the factor in front of A₈₀, with just an extra constant coefficient cos 80°, so it can be calculated directly from the 80° data. In this way, the factors for each asymmetry are associated with their originating data set, without unwanted admixtures.

Rearranging the factors by common kinematic terms we have

$$A_{1} = \frac{1}{D'} \left(\frac{E - E' \cos \theta}{E + E'} A_{180} + \frac{E' \sin \theta}{(E + E') \cos \phi} \frac{A_{180} \cos 80^{\circ} + A_{80}}{\sin 80^{\circ}} \right)$$
$$A_{2} = \frac{1}{D'} \frac{1}{2E} \left(\sqrt{Q^{2}} A_{180} - \sqrt{Q^{2}} \frac{E - E' \cos \theta}{E' \sin \theta \cos \phi} \frac{A_{180} \cos 80^{\circ} + A_{80}}{\sin 80^{\circ}} \right)$$

where the term $(A_{180}\cos 80^\circ + A_{80})/\sin 80^\circ$ is similar to what Hovhannes Baghdasaryan³ has been calling $A_{90}(0)$, but here it applies at all values of ϕ , not just over a restricted range. Because we took data at 80° we have a linear combination of A_{90} and A_{180} : $A_{80} = A_{90} \sin 80^\circ - A_{180} \cos 80^\circ$. The kinematic factor in front of this " A_{90} " must come from the 80° data.

^{1 &}lt;u>http://twist.phys.virginia.edu/~jrm2zq/sf_deriv.pdf</u>

² http://twist.phys.virginia.edu/~or/e01006/analysis/aparaper.pdf

³ https://hallcweb.jlab.org/experiments/sane/wiki/index.php/Asymmetry_extraction