Deadtime Corrections
July 7, 94 T.J. Liu

Oune of the methods we tried cante from David Kawall, which we will
refer to as method 1. It tries to predict the true rate from the obsered By
(Zero trigger probability) , using Poisson distribution. For each run, we
have tfreq(i), which is the number of spills when we get i hits on mainor,
where i goes from 0 to 16. We also bin the charge of each spill into different
q bins. We now have qx(i) and qy(i).

gx(i): charge value of ith bin.

qy(i): number of spills of ith bin.

assumne for a given charge, for a given spectrometer and hean polar-
ization,

number of counts=cq ( ¢ is a constant and q 1s the charge )

For one spill, Py = e—*9, Then we sumn up all the s nlls, we have:
] s £ 3

_ 2 ay(i) x emexae(®

> qy(7)

On the other hand, from tfreq(i), we have:

tfreg(0)
Py =
D N E freq(i)

In this way, we have an equation to solve for c¢. Then the true counts

are given by

Ryeqr = Zc X qy(i) x gz(i)
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while the observed counts are:

i=16

Rop = Z min(4,i) x tfreq(i)

i=1

then the correction factor is given by;

lzreaf
Rob

deadfac =

Calculated the dead time correction factors using this method, and
found that soine runs Lhave resonable correction factors, say, for an average
rate of 1, the factor is 1.02. but some others do not make sense, like for
an average rate of .5, some give a correction factor of say, 1.2. And these
“good” and “bad” runs appear in groups. Then I used a Monte Carlo
program, assuming a dead time of 32ns, using the true rate derived by the
above method, to reproduce tfreq distribution for each run, and saw that for
the “good” runs, the reproduced tfreq agrees quite well with the observed
one, but for the “bad” runs, they are way off. Tried to vary the dead time
all the way up to 400 ns for these “bad” runs, still did not see agreement.
Then noticed that the transition between “good” and “bad” runs happen
when we are switching from electron runs to positron ones, or when we
are changing the prescalar settings. Then I realized that because of the
prescalars, even without dead time and with one ¢ bin, tfreq would not he
Poisson. So trying to predict the true rate using Poisson distribution is
mcorrect. (See appendix for more detail). In our system, the main trigger
coming into mainor is not prescaled while the Pion trigger is, that malkes it
more complicated. However, when we are doing normal electron runs and

prescalar values are set high, the mainor is dominated by the main trigger,
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so method 1 gives reasonable factors. When the prescalar values are set
low, or when we are doing positron runs, prescaled Pion trigger is no longer
negligible, that is why we get crazy numbers.

So we are forced to go back to the old E143 method, which we will call
“method 2”. This method is what we are using now. Assuming a spill time
and a dead time, to generate the probability matrix M(i,j), which is the

probability of observing i hits when there were really j hits, using Monte

Carlo. We have:

tfreq(i) = 37 M(i,§) x rtfreq(j)
J
where tfreq (rtfreq) is the observed(real) trigger frequency distribution. In
principal, j in the sum goes to infinity, but because we are getting practically
no hits beyond 10, it is safe to take j only up to 16. Then we invert this

matrix M, to solve for rtfreq from tfreq, and define our correction factor as

deadfac = _Z:j:}% X rtfreq(i) ,
Sz P min(4,4) x tfreq(i)

Looked at mainor time distribution in each run, it represents the spill
shape. All the runs I looked at are around 2200 ns width. Also looked
at adjacent mainor timing, there is a sudden rise at 32 ns. So use 2200
ns as beam time, and 32 ns as the dead time. The correction factor vs.
rate looks quite smooth. Then plotted the correction factor vs. rate for
the “good” runs only, using wmethod 1, fromn sp4, compared with what we
get from method 2, using 2200 ns as beam time. They agree quite WGH.
(because there are a fairly large percentage of Pion trigger rate in mainor

for sp7, so did not use method 1 for sp7 as comparison). Then plotted the
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correction factor vs. rate for spd using method 2, for a beam time of 1800
ns and 2600 ns. Compare these with the “good” runs plot using method 1
mentioned above, we see 1800 ns gives too high a correction, while 2600 ns
gives too low a correction.

So, the method we decide to use is method 2, with a beam time of 2200
ns, and a dead time of 32 ns. We use the same method, but with beam
time of 1800 ns and 2600 ns as the upper and lower limit, to get the error.
We see that the correction factor itself is accurate to a few parts in 1000,
and the error for the asymmetry is less than 2E-5.

To check the accuracy of the probability matrix M, used the Monte
Carlo program but different trial number, the Change in M is negligible.

Also checked some element of M by Land, they agree.



Appendix

Assume there is no deadtime, and just one ¢ bin, then tfreq seems to be
given by poisson distribution. But bhecause Piou trigger is prescaled, that
makes tfreq distribution different from possion distribution. A handwavi.ng
proof is that, Possion distribution is generated when the probablity of reg-
istering one hit in a small time interval dt is proportional to dt. But with
prescalars, the moment after the prescalar is cleared; there is NO probabil-
ity of registeriug one hit, and the probability increases with time,until the
next clearance. So it is no longer uniform in time. Following gives more
detail: |
Assume for now that only Pion trigger comes into the mainor and is
prescaled by a factor of N, and the observed average rate is :
Y i x tfreq(i)
> in teeq (1)

so the true average rate before the prescalar must be: trate=orate*N |

orate =

and ppois(i) (the probability of finding i hits in one spill BEFORE the
prescalar) is Possion distribution. Now let’s try to produce tfreq(i)(which
is AFTER the prescalar) from ppois(i). Let’s assume N=2 to make it easier
to understand. Taking one spill during the run, at the begging of it, the
prescalar might have received 0 or 1 hit. Because the total hits during
the run is much larger than the prescalar value 2, each case has the same
probability 1/2 . To find out tfreq(0), let’s say When in case 1(prescalar has
received O hit), if this spill had 0 or 1 hit, then the prescalar still woudn’t
fire. This probability is 1/2%(ppois(0)+ppois(1)); When in case 2 (prescalar

has received 1 hit), then only if this spill had 0 hit, woudn’t the prescalar

5



fire. This probability is 1/2*(ppois(0)). So summing up these 2, we get
tfreq(0). Similarly, we can find out all the tfreq(i). They are quite different
from PPoisson distribution.

Following is a table, for different orate vs. prate(the rate calculated
from O trigger probability using naive Poisson distribution and assuming
one ¢ bin) at different prescalar values.

orate prate N  prate/orate

2 218 2 1.09
4 464 2 1.16
s 095 2 1.19
i .869 2 1.24
9 1.158 2 1.29
9 656 4 1.31
5 685 8 1.37
0 .692 16 1.38

Things are actually more complicated than the above, because:

A: If we put in dead time, the tfreq(0) might be affected. For example,
say N=2, sometimes at one spill, we might actually get say 2 hits before
the presvalar, but because of the dead time, only 1 is left, and it may not
fire the prescalar. B: Not all the inputs into the mainors are prescaled by
the same nunber.

Following is for run 2558, spec?. This is a positron run and Pion
triggers are 98 percent of the mainors, prescalars are 2 2 2 1.

tfreq(0)**tfreq(1)**tfreq(2)**tfreq(3) **tfreq(4)**tireq(5)**tfreq(6)l]

A 116378%*%8]902%HH%1 Q7] Fh¥Hk] J(kikikgickkkiokkpiokkixkk()

B 116378%F*¥GOGE1*F**¥(QBH i+ ] Gk kkkkgo gkt rforsotikoker
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C 115673* 703021+ ¥k9] QQ**F¥* 4]0 HH* k] FHkskkokok g gkobksnky
D 116378*F*X84 706X %1 (21 (FH+*+ 45 QM HHkkk] (prkkokok(k koo k()
Note: A is observed distribution, B is naive poisson distribution using
0 trigger probability, assuning one g bin and no deadtime, C is Monte Carlo
assuming a 32 ns deadtime, D is the "right” method, taking into account of
a prescalar value of 2 (neglecting the 2 percent not prescaled main triggers
in this run), assuming one ¢ bin and no deadtime. We see that row D

aggrees better than C or B.
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