

Hall C Slow Raster Setup Procedure

Document Number: MCC-PR-06-003 Revision Number: Rev. 3b2; DRAFT Technical Custodian: Chris Cuevas Estimated Time to Perform: 10 minutes

Procedure Overview

NEXT

PAGE

BACK 1 PAGE This procedure is for use by operators in the MCC Control Room and describes the threshold limit setup of the Hall C Slow Raster Magnet Monitor screen. The Hall C slow raster magnets are installed in the Hall C beamline at locations 3C20AH and 3C20AV. The raster system produces a spiral raster pattern, and the raster must be ON whenever CW beam is delivered to the SANE polarized target. Hall C personnel configure the raster hardware and enter magnet current settings as appropriate for the beam energy and current; MCC personnel verify the magnet current settings. The Hall C Slow Raster Magnet Monitor screen is used to monitor the slow raster magnet current, set the current limit thresholds, and clear FSD faults. See Figure 1 on page 3 for a block diagram of the raster system.

Prerequisites

1. Contact the Hall C Shift Leader and verify that Hall C personnel have configured the raster magnets (3C20AH and 3C20AV) to produce a spiral pattern on the Hall C target for the given beam current and beam energy. Ask the The Hall C Shift Leader for the intended magnet-current settings, and record these settings for use later in this procedure.

Procedure Steps

- 1. Stop the beam from entering Hall C by whatever means the MCC Crew Chief deems appropriate (beam off, switch to an upstream dump, insert Faraday Cup, etc.).
- 2. Open the Hall C Target Slow Raster Monitor screen (monticello.edl⇒Hall C⇒Hall C Raster, Slow).
- 3. Compare the present X and Y magnet current readbacks with the settings provided by the Hall C Shift Leader (see Prerequisites, Step 1). Do the values match?

A. Contact the Hall Shift Leader and have him/her verify the present raster system setup is appropriate for the beam energy and current.

- 4. Click on the Calculate Thresholds button. The new threshold settings are automatically calculated based on the present magnet current settings. Verify that the thresholds make sense when compared to the X and Y magnet current readbacks (the thresholds should $\pm 15\%$ of these readbacks).
- 5. Record the calculated thresholds in the ELog for later reference. (??is this step necessary, couldn't these value be archived??)
- 6. Click on the Clear button to reset the Fast Shutdown (FSD).
- 7. Establish beam to the polarized target as requested by the hall. Did you get a raster system FSD trip?

NO YES A. Check the FSD status bits to see which limit caused the trip. Is the magnet current setting within the threshold limits?

YES NO B. Call the Hall C Shift Leader and request the proper raster current setpoint. If a change is made, click on the Calculate Thresholds button, and try to establish beam again. Did you get another raster system FSD trip?

YES NO+ C. PROCEDURE COMPLETE.

D. Contact one of the following personnel for help with the system:

	Extension #	Cell/Pager	Home #
Bill Gunning	5017		879-2420
Chris Cuevas	5053	869-5704	865-0461
Mark Jones	7733	584-7733	

8. PROCEDURE COMPLETE.

Figure 1: Hall C Target Raster Block Diagram

