q

10

11

12

13

14

15

16

17

18

19

20

21

Spin Asymmetries of the Nucleon Experiment

Whitney R. Armstrong^{*} and Second Author[†] Authors' institution and/or address This line break forced with \\

Charlie Author[‡] Second institution and/or address This line break forced and Third institution, the second for Charlie Author

Delta Author

Authors' institution and/or address This line break forced with \backslash

(SANE Collaboration)

(Dated: January 7, 2016)

The Spin Asymmetries of the Nucleon experiment (SANE) measured two double spin asymmetries using a polarized proton target and polarized electron beam at two beam energies, 4.7 GeV and 5.9 GeV. A large acceptance, open configuration detector package identified scattered electrons at 40° and covered a wide range in Bjorken x (0.3 < x < 0.8). The twist-3 matrix element, \tilde{d}_{2}^{p} , was extracted from the measured spin structure functions, g_{1}^{p} and g_{2}^{p} , that provides information on the dynamical higher twists associated with quark-gluon correlations. Our results at Q^{2} values from 1.0 to 6.0 GeV² were found to be in agreement with the two existing measurements and lattice QCD calculations, however, the scale dependence indicates observation of an average color Lorentz force.

Quantum chromodynamics successfully describes 22 many observables in high energy processes where the 23 coupling is small and perturbative (pQCD) calculations 24 are applicable. Lattice QCD calculations continue to 25 mature and provide insight when the coupling is strong. 26 However, experiment and lattice calculations have had 27 a dichotomous existence; lattice QCD calculations have ⁴³ 28 great difficulty with experimentally-accessible observ-44 29 ables, whereas, lattice easily calculates observables that $^{\scriptscriptstyle 45}$ 30 are, at present, practically impossible to measure. 31

When promoted from subject of experimental investi-⁴⁷ 32 gation to theoretical tool, precision pQCD calculations ⁴⁸ 33 are useful for unraveling the non-perturbative dynam-⁴⁹ 34 ics of color confinement. An operator product expan-35 sion (OPE) provides well-defined quantities which cod- 50 36 ify not only parton distributions, but also quark-gluon 37 correlations that lack a partonic interpretation. Perhaps 51 38 more importantly, a transversely polarized nucleon target 39 probed with polarized electrons yields an *unique* experi-40 mental situation where non-trivial ab initio lattice QCD 52 41

41 interior studieton where non-trivial ab initio lattice Q
 42 calculations can be tested.

The nucleon spin structure functions, g_1 and g_2 , parameterize the asymmetric part of the hadronic tensor, which through the optical theorem, is related to the forward virtual Compton scattering amplitude, $T_{\mu\nu}$. The reduced matrix elements of the quark operators appearing in the OPE analysis of $T_{\mu\nu}$ are related to Cornwall-Norton (CN) moments of the spin structure functions. At next-to-leading twist, the CN moments of give

$$\int_0^1 x^{n-1} g_1(x, Q^2) dx = a_n + \mathcal{O}\left(\frac{M^2}{Q^2}\right), \quad n = 1, 3, \dots (1)_{\text{61}}$$

and

$$\int_0^1 x^{n-1} g_2(x, Q^2) dx = \frac{n-1}{n} (d_n + a_n) + \mathcal{O}\left(\frac{M^2}{Q^2}\right), \quad (2)$$
$$n = 3, 5, \dots$$

where $a_n = \tilde{a}_{n-1}/2$ and $d_n = \tilde{d}_{n-1}/2$ are the twist-2 and twist-3 reduced matrix elements, respectively, which for increasing values of n have increasing dimension and spin.

If target mass corrections (TMCs) are neglected, the twist-3 matrix element can be extracted from the n = 3 CN moments at fixed Q^2

$$\tilde{d}_2 = \int_0^1 x^2 \left(2g_1(x) + 3g_2(x) \right) dx = 3 \int_0^1 x^2 \bar{g}_2(x) dx \quad (3)$$

where

$$\bar{g}_2(x) = g_2(x) - g_2^{WW}(x) = g_2(x) - \left[\int_x^1 \frac{g_1(y)}{y} dy - g_1(x)\right].$$
(4)

The term in brackets is the leading twist piece of g_2 known as Wandzura-Wilczek (WW) relation [1], thus, leaving \bar{g}_2 only containing higher twist contributions.

The d_2 matrix element is of particular interest because it can be interpreted as an average transverse color Lorentz force acting on the struck quark the instant after being struck by the virtual photon[2, 3]. This can be easily seen by explicitly writing the matrix element

$$\tilde{d}_2 = \frac{1}{2MP^{+2}S^x} \langle P, S \mid \bar{q}(0)gG^{+y}(0)\gamma^+q(0) \mid P, S \rangle.$$
(5)

where the proton is moving in the infinite momentum 97 62 frame, i.e., $\vec{v} = -c\hat{z}$, and the field strength tensor be-98 63 comes 99 64

 $\left[\vec{E} + \vec{v} \times \vec{B}\right]^y = E_y + B_x = \sqrt{2}G^{+y}$

and 66

65

67

73

$$F^{y} = -\frac{\sqrt{2}}{2P^{+}} \langle P, S | \bar{q}(0) G^{+y}(0) \gamma^{+} q(0) | P, S \rangle \qquad (7)_{106}^{105} = -2M^{2}d_{2} \qquad (7)_{107}^{105} = -2M^{2}d_{2} \qquad (7)_{107}^{107} = -2M^{$$

108 Furthermore, when considering higher twist matrix elements Burkardt [2] showed that the color electric and¹⁰⁹ magnetic forces can be separated by 111

$$F_E = \frac{-M^2}{4} \left[\frac{2}{3} (2\tilde{d}_2 + \tilde{f}_2) \right] \tag{8}_{113}^{112}$$

100

102

103

104

105

107

117

118

 $(6)_{101}$

$$F_B = \frac{-M^2}{2} \left[\frac{1}{3} (4\tilde{d}_2 - \tilde{f}_2) \right]. \tag{9}^{114}$$

The twist-4 matrix element is defined as 68

$$\tilde{f}_{2} M^{2} S^{\mu} = \frac{1}{2} \sum_{i} e_{i}^{2} \langle P, S | g \bar{\psi}_{i} \tilde{G}^{\mu\nu} \gamma_{\nu} \psi_{i} | P, S \rangle \quad (10)^{119}_{120}$$

and it can be extracted from the first moment of $g_{1,122}$ 70 The next-to-leading twist contribution to Γ_1 is written₁₂₃ 71 in terms of the reduced matrix elements^[4] 72 124

$$\mu_4 = \frac{M^2}{9} \left(\tilde{a}_2 + 4\tilde{d}_2 + 4\tilde{f}_2 \right), \qquad (11)^{126}_{127}$$

where \tilde{a}_2 is twist-2, \tilde{d}_2 is twist-3, and \tilde{f}_2 is twist-4. Since ¹²⁸ 74 μ_4 does not enter at leading twist it must determined by¹²⁹ 75 subtracting the, presumably well known, leading twist 76 131

77
$$\Delta \Gamma_1 = \Gamma_1 - \mu_2$$
 (12)¹³²

where the $\Delta\Gamma_1$ contains all higher twists. Therefore it¹³⁴ 78 should be clear that a clean determination of f_2 would¹³⁵ 79 require precision data taken at high Q^2 in order to make¹³⁶ 80 sure all higher twists are suppressed. Then by moving137 81 to lower Q^2 the with matched precision in \tilde{d}_2 and \tilde{a}_2 the¹³⁸ 82 difference can be attributed to \tilde{f}_2 or even higher twists.¹³⁹ 83 Before this can be done, however, the leading twist terms¹⁴⁰ 84 must be well determined by precision measurements at₁₄₁ 85 low x, where the integral of the first moment dominates,142 86 and large momentum transfers to ensure the absence of_{143} 87 higher twists. 144 88

It should be emphasized here that a measurement of $q_{2^{145}}$ 89 provides *direct* access to higher twist effects, i.e., without₁₄₆ 90 complicating fragmentation functions that are found in147 91 SIDIS experiments. This puts polarized DIS in an en-148 92 tirely unique situation to test lattice QCD [5] and model¹⁴⁹ 93 calculations of higher twist effects. 150 94

We conducted the experiment at Jefferson Lab in Hall-151 95 C during the winter of 2008-2009 using a longitudinally₁₅₂ 96

polarized electron beam and a polarized proton target. Production data was taken with two beam energies, 4.7 and 5.9 GeV, and with two target polarization directions: longitudinal, where the polarization direction was along the direction of the electron beam, and transverse, where the target polarization pointed in a direction perpendicular to the electron beam. The target angle for the transverse configuration was 80° in order to accommodate electrons detection at similar kinematics for both configurations. Scattered electrons were detected in a new detector stack called the big electron telescope array (BETA) and also independently in Hall-C's high momentum spectrometer (HMS).

The beam polarization was measured periodically using a Møller polarimeter and production runs had beam polarizations from 60% up to 90%. The beam helicity was flipped from parallel to anti-parallel at 30 Hz and the helicity state, determined at the injector, was recorded for each event.

A dynamically polarized ammonia target acted as an effective polarized proton target and achieved an average polarization of 68% by using a 5.1 T polarizing field and microwave pumped cryogenic target cells. NMR measurements, calibrated against the calculable thermal equilibrium polarization, provided a continuous monitor of the target polarization. To mitigate its local heating and depolarizing effects, the beam current was limited to 100 nA and a slow raster system moved the beam around within a 2 cm diameter circle. In order to allow for continuous taking, alternating target cells were used and swapped out of the beam when the polarization dipped below 60%. Also by adjusting the microwave pumping frequency the polarization direction was reversed. These two directions, positive and negative target polarizations, were used to estimate associated systematic uncertainties, and by taking equal amounts of data under positive and negative target polarization directions, cancel any correlated behavior in the sum. The initial data was taken with the target polarizing magnet in the transverse configuration then physically rotated into the longitudinal configuration.

BETA comprised of four detectors: a forward tracker placed close to the target, a threshold gas Cherenkov counter, a Lucite hodoscope, and a large electromagnetic calorimeter called BigCal. BETA was placed at a fixed central scattering angle of 40° and covered a solid angle of roughly 200 msr. Electrons were identified by the Cherenkov counter which had an average signal of roughly 20 photoelectrons[6]. The energy was determined by the BigCal calorimeter which consisted of 1744 lead glass blocks placed 3.5 m from the target. BigCal was calibrated using a set of $\pi^0 \to \gamma \gamma$ events. The Lucite hodoscope provided additional timing and position event selection cuts and the forward tracker was not used in the analysis of production runs.

The target's 5.1 T polarizing magnetic field caused

large deflections for charged particle tracks. In order to197
reconstruct tracks at the primary scattering vertex, cor-198
rections to the momentum vector reconstructed at BigCal199
were calculated from a set of neural networks that were200
trained with simulated data sets for each configuration. 201

BETA's large solid angle and open configuration al-²⁰² lowed a broad kinematic range in x and Q^2 to be covered.²⁰³ The data was grouped into four Q^2 bins to calculate the²⁰⁴ moments at nearly constant Q^2 . The Q^2 bins had average²⁰⁵ values of 1, 2, 3.5, and 4.5 GeV²/c².²⁰⁶

The measured double spin asymmetries for longitudi-207 nal and transverse target polarizations were formed by 208 changing the electron beam helicity and defined as 209

¹⁶⁶
$$A_m(\alpha) = \frac{1}{df(W, Q^2) P_B P_T} \left[\frac{N_+ - N_-}{N_+ + N_-} \right] \qquad (13)^{210}$$

where $\alpha = 180^{\circ}$ or 80° for the longitudinal and trans-²¹² 167 verse target configurations respectively. The normalized²¹³ 168 counting rates are $N_{\pm} = n_{\pm}/(Q_{\pm}L_{\pm})$ where n_{\pm} is the²¹⁴ 169 raw number of counts, Q_{\pm} is the accumulated charge for²¹⁵ 170 the given beam helicity over the counting period, and $L_{+^{216}}$ 171 is the live time for each helicity, $df(W,Q^2)$ is the target²¹⁷ 172 dilution factor, and the beam and target polarizations²¹⁸ 173 are P_B and P_T respectively. 174

The target dilution factor takes into account scattering²²⁰ 175 from unpolarized nucleons in the target and is depends on²²¹ 176 the electron scattering kinematics. The packing fraction²²² 177 of the ammonia beads inside the target cell gives the 178 relative amount of ammonia to liquid He inside and is 179 crucial for an accurate determination of df. The packing²²³ 180 fraction was determined by comparing the electron yields 181 measured by the HMS to a simulation and using a carbon²²⁴ 182 target with a well-known packing fraction to provide a 183 baseline and calibration point for the simulation. 184

The major source of background comes from the de-²²⁵ 185 cay of π^0 s into two photons which, subsequently, produce 186 an electron-positron pair that is then identified then as $_{226}$ 187 a DIS electron. Pairs produced outside outside of the $_{227}$ 188 target no longer experience a strong magnetic field and 189 travel in nearly the same direction. These events pro-190 . 229 duced twice the amount of Cherenkov light and are ef-191 fectively removed with an upper ADC cut[6]. However, 192 pairs produced inside the target are sufficiently deflected 193 causing BETA to observe only one of the pairs' particles. 194 These events cannot be removed through selection cuts 195 and dominate the background events. 196

The background dilution and contamination was determined by fitting existing data and running a simulation to determine their relative contribution. This correc- $_{230}$ tion only becomes significant at energies below 1.2 GeV₂₃₁ where the positron-electron ratio begins to rise. The₂₃₂ background correction consisted of a dilution and con- $_{233}$ tamination term defined as

$$A_b(\alpha) = A_m / f_{\rm BG} - C_{\rm BG}.$$
 (14)

The contamination term was small and only increases to 1% at the lowest x bin. The background dilution increases with decreasing values of x and becomes significant (> 10% of the measured asymmetry) only for x < 0.35.

After correcting for the pair symmetric background the radiative corrections were applied following the standard formalism laid out by Mo and Tsai [7] and the polarization dependent treatment of Akushevich, et.al. [8]. The elastic radiative tail calculated from models of the proton form factor [9]. The pair-symmetric background corrected asymmetry was corrected with elastic dilution and contamination terms

$$A_e(\alpha) = A_{cor}/f_{el} - C_{el} \tag{15}$$

where f_{el} is the ratio of inelastic scattering to the sum of elastic and inelastic scattering, and C_{el} is the elastic scattering cross section difference over the total inelastic cross section. The elastic dilution term remained less than 10% of the measured asymmetry in the range x = [0.3, 0.8]for both target configurations. In the same range of x the longitudinal elastic contamination remained less than 10% in absolute value, whereas, the transverse elastic contamination remained less than a few percent in absolute units.

The virtual Compton scattering asymmetries can be written in terms of the measured asymmetries

$$A_{1} = \frac{1}{D(1+\eta\xi)} \Big[A_{180} \big(1 + \chi \cot \alpha \big) + A_{80} \big(\chi \csc \alpha \big) \Big]$$
(16)

$$A_2 = \frac{\xi - (\chi/\eta) \cot \alpha}{D(1+\eta\xi)} \Big[A_{180} + A_\alpha \left(\frac{1}{\cos \alpha - \chi \sin \alpha \cos^2 \phi} \right) \Big]$$
(17)

where η , ξ , and χ are functions of only the scattered electron kinematic variables, and D which also depends on the ratio of longitudinal to transverse cross section, $R = \sigma_L / \sigma_T$.

The spin structure functions can be obtained from the measured asymmetries by using equations 16 and 17 with

9

$$y_1 = \frac{F_1}{1 + \gamma^2} (A_1 + \gamma A_2)$$
 (18)

$$g_2 = \frac{F_1}{1 + \gamma^2} \left(A_2 / \gamma - A_1 \right)$$
(19)

where $\gamma^2 = Q^2/\nu^2$. The combined results for g_1^p and g_2^p are shown in FIG. 1. These results significantly improve the world data on g_2^p . Additionally, it provides much needed data for both spin structure functions at high x.

When target mass corrections become significant matrix elements of definite twist and spin cannot be extracted from the CN moments. Nachtmann moments,



FIG. 1. The results for $x^2g_1^p$ (top) and $x^2g_2^p$ (bottom). (This is a place holder figure that will be improved)

by their construction, select matrix elements of definite twist and spin. At low Q^2 , Nachtmann moments should be used instead of the CN moments as emphasized in [10]. Definitons of the Nachtmann moments are found in [10–12] and are related to the reduced matrix elements through

$$M_1^{(n)}(Q^2) = a_n = \frac{a_{n-1}}{2}, \quad \text{for } n = 1, 3...$$
 (20)

$$M_2^{(n)}(Q^2) = d_n = \frac{d_{n-1}}{2}, \quad \text{for } n = 3, 5... \quad (21)_{256}$$

where we use the convention of Dong[13]. When the target mass is neglected, i.e. $M^2/Q^2 \rightarrow 0$, these equations²⁵⁸ reduce to $M_1^1 = \Gamma_1$ and $I = 2M_2^3$.

It is important to note that the moments include the₂₆₀ point at x = 1 which corresponds to elastic scattering₂₆₁ on the nucleon. Using empirical fits to the electric and₂₆₂ magnetic form factors the elastic contribution to the mo-₂₆₃

ments is computed using the structure functions

$$g_1^{el}(x,Q^2) = \delta(x-1)G_M(Q^2)\frac{G_E(Q^2) + \tau G_M(Q^2)}{2(1+\tau)}$$
(22)
$$g_2^{el}(x,Q^2) = \delta(x-1)\tau G_M(Q^2)\frac{G_E(Q^2) - G_M(Q^2)}{2(1+\tau)}$$
(23)

where $\tau = Q^2/4M^2$. At large Q^2 the elastic contribution is negligible. In some sense the elastic contribution, \tilde{d}_2^{el} , is of little interest; it is the deviation from the elastic, i.e. the inelastic part, which provides the insight into the color forces responsible for confinement.

The results for the Nachtmann moment $2M_2^{(3)}(Q^2) = \tilde{d}_2(Q^2)$ are shown in FIG. 2 along with a comparison to the existing measurements and lattice calculations. The results around $Q^2 = 5 \text{ GeV}^2$ are roughly in agreement with the lattice calculations [5].

The two previous measurements of \tilde{d}_2^p are shown in FIG. 2. The first \tilde{d}_2^p measurement at $Q^2 = 5$ GeV² was extracted from the combined results of the SLAC E143, E155, and E155x experiments[14]. The measurement from the Resonance Spin Structure (RSS) experiment [15, 16], extracted a value \tilde{d}_2^p value at $Q^2 =$ 1.28 GeV². These two results are shown in Figure 2 along with a lattice QCD calculation [17].

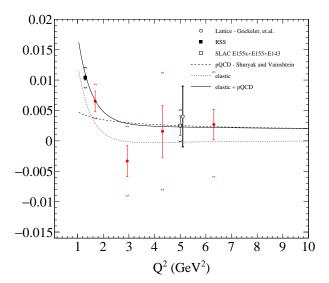


FIG. 2. The results for d_2^p .(This is a place holder figure that will be improved)

The results given in table I are consistent with previous measurements and lattice calculations, however, at intermediate $Q^2 \tilde{d}_2$ is lower than the next-to-leading power corrections predict. Interestingly, this result is consistent with a recent neutron \tilde{d}_2^n measurement [18] which also observed a significantly more negative value at $Q^2 = 3 \text{ GeV}^2$, indicating that the forces observed₂₉₇ are iso-spin independent. Interpreted as an average color²⁹⁸ Lorentz force, this observation agrees with simple model²⁹⁹ that the proton and neutron, differing only by an iso-spin³⁰⁰ rotation, have the same color-space wave-function, there-³⁰¹ fore, on average the struck quark will feel the same color₃₀₃ force. 304

In summary, the proton's spin structure functions $g_{1_{306}}^{305}$ and g_2 have been measured at kinematics allowing for an_{307}^{307} extraction of four \tilde{d}_2 values each at near constant Q^2 . 308

309

313

314

315

316

317

318

We wish to acknowledge the support of the $\operatorname{author}_{310}^{11}$ community in using REVT_EX, offering suggestions and 311encouragement, testing new versions, 312

- ²⁷⁷ * Also at Physics Department, XYZ University.
- ²⁷⁸ [†] Second.Author@institution.edu
- ²⁷⁹ [‡] http://www.Second.institution.edu/~Charlie.Author ³¹⁹
- [1] S. Wandzura and F. Wilczek, Phys. Lett. B72, 195³²⁰ (1977).
- [2] M. Burkardt, Spin structure at long distance. Proceed.³²²
 ings, Workshop, Newport News, USA, March 12-13,³²³
 2009, AIP Conf. Proc. 1155, 26 (2009), arXiv:0905.4079³²⁴
 [hep-ph]. 325
- [3] M. Burkardt, in Exclusive reactions at high momen-³²⁶ tum transfer. Proceedings, 4th Workshop, Newport³²⁷ News, USA, May 18-21, 2010 (2011) pp. 101–110,³²⁸ arXiv:1009.5442 [hep-ph].
- [4] X.-D. Ji and W. Melnitchouk, Phys. Rev. D56, 1 (1997),³³⁰
 arXiv:hep-ph/9703363 [hep-ph].
- [5] M. Gockeler, R. Horsley, W. Kurzinger, H. Oelrich,³³²
 D. Pleiter, P. E. L. Rakow, A. Schafer, and G. Schierholz,³³³
 Phys. Rev. D63, 074506 (2001), arXiv:hep-lat/0011091³³⁴
 [hep-lat].
- ²⁹⁶ [6] W. R. Armstrong, S. Choi, E. Kaczanowicz, A. Lukhanin,³³⁶

Z.-E. Meziani, and B. Sawatzky, Nucl. Instrum. Meth. A804, 118 (2015), arXiv:1503.03138 [physics.ins-det].

- [7] L. W. Mo and Y.-S. Tsai, Rev. Mod. Phys. 41, 205 (1969).
- [8] I. V. Akushevich and N. M. Shumeiko, J. Phys. G20, 513 (1994).
- [9] J. Arrington, W. Melnitchouk, and J. A. Tjon, Phys. Rev. C76, 035205 (2007), arXiv:0707.1861 [nucl-ex].
- [10] Y. B. Dong, Phys. Rev. C78, 028201 (2008), arXiv:0811.1002 [hep-ph].
- [11] S. Matsuda and T. Uematsu, Nucl. Phys. B168, 181 (1980).
- [12] A. Piccione and G. Ridolfi, Nucl. Phys. B513, 301 (1998), arXiv:hep-ph/9707478 [hep-ph].
- [13] Some authors define the matrix elements excluding a factor of 1/2[11, 19-21], and/or use even n for the moments [22, 23]. In this work we use the convention of [10, 12] which absorbs the 1/2 factor into the matrix element and use odd n for the moments, whereas, the matrix elements excluding the 1/2 and even n are \tilde{a}_{n-1} and \tilde{d}_{n-1} .
- [14] P. L. Anthony *et al.* (E155), Phys. Lett. **B553**, 18 (2003), arXiv:hep-ex/0204028 [hep-ex].
- [15] F. R. Wesselmann *et al.* (RSS), Phys. Rev. Lett. 98, 132003 (2007), arXiv:nucl-ex/0608003 [nucl-ex].
- [16] K. Slifer *et al.* (Resonance Spin Structure), Phys. Rev. Lett. **105**, 101601 (2010), arXiv:0812.0031 [nucl-ex].
- [17] M. Gockeler, R. Horsley, D. Pleiter, P. E. L. Rakow, A. Schafer, G. Schierholz, H. Stuben, and J. M. Zanotti, Phys. Rev. **D72**, 054507 (2005), arXiv:hep-lat/0506017 [hep-lat].
- [18] M. Posik *et al.* (Jefferson Lab Hall A), Phys. Rev. Lett. 113, 022002 (2014), arXiv:1404.4003 [nucl-ex].
- [19] J. Kodaira, S. Matsuda, T. Muta, K. Sasaki, and T. Uematsu, Phys. Rev. **D20**, 627 (1979).
- [20] J. Kodaira, Nucl. Phys. **B165**, 129 (1980).
- [21] J. Kodaira, S. Matsuda, K. Sasaki, and T. Uematsu, Nucl. Phys. B159, 99 (1979).
- [22] R. L. Jaffe and X.-D. Ji, Phys. Rev. D43, 724 (1991).
- [23] J. Blumlein and A. Tkabladze, Nucl. Phys. B553, 427 (1999), arXiv:hep-ph/9812478 [hep-ph].

Q^2	х	Total	Measured	Elastic	Low x
${ m GeV^2/c^2}$	х				
Q^2		(total)	(measured)	(elastic)	(low-x)
Q^2		(total)	(measured)	(elastic)	(low-x)
Q^2		(total)	(measured)	(elastic)	(low-x)
Q^2		(total)	(measured)	(elastic)	(low-x)

TABLE I.