

SANE Higher Twists

Whitney R. Armstrong

Argonne National Laboratory

October 2016

Introduction

d_2 Extraction

$$d_2 = 3 \int x^2 \bar{g}_2(x) dx$$
$$\bar{g}_2(x) = g_2^{exp} - g_2^{WW}$$

$$\begin{split} g_1^{exp}(x,Q^2) &= g_1^{{\color{blue}\tau}=2}(x,Q^2) + g_1^{{\color{blue}\tau}=3}(x,Q^2) + g_1^{{\color{blue}\tau}=4}(x,Q^2) + \dots \\ g_2^{exp}(x,Q^2) &= g_2^{{\color{blue}\tau}=2}(x,Q^2) + \frac{g_2^{{\color{blue}\tau}=3}}{2}(x,Q^2) + g_2^{{\color{blue}\tau}=4}(x,Q^2) + \dots \end{split}$$

d_2 Extraction

$$d_2 = 3 \int x^2 \bar{g}_2(x) dx$$
$$\bar{g}_2(x) = g_2^{exp} - g_2^{WW}$$

$$\begin{split} g_1^{exp}(x,Q^2) &= g_1^{\tau=2}(x,Q^2) + g_1^{\tau=3}(x,Q^2) + g_1^{\tau=4}(x,Q^2) + \dots \\ g_2^{exp}(x,Q^2) &= g_2^{\tau=2}(x,Q^2) + g_2^{\tau=3}(x,Q^2) + g_2^{\tau=4}(x,Q^2) + \dots \end{split}$$

The Wandzura-Wilczek relation gives the twist-2 contribution to g_2

$$g_2^{WW}(x) = g_2^{\tau=2}(x) = -g_1^{\tau=2}(x) + \int_x^1 \frac{\mathrm{dy}}{y} g_1^{\tau=2}(y)$$

but we need only the leading twist $g_1^{\tau=2}$, not g_1^{exp} .

d_2 Extraction

$$d_2 = 3 \int x^2 \bar{g}_2(x) dx$$

$$\bar{g}_2(x) = g_2^{exp} - g_2^{WW}$$

$$\begin{split} g_1^{exp}(x,Q^2) &= g_1^{\tau=2}(x,Q^2) + g_1^{\tau=3}(x,Q^2) + g_1^{\tau=4}(x,Q^2) + \dots \\ g_2^{exp}(x,Q^2) &= g_2^{\tau=2}(x,Q^2) + \frac{g_2^{\tau=3}}{2}(x,Q^2) + g_2^{\tau=4}(x,Q^2) + \dots \end{split}$$

The Wandzura-Wilczek relation gives the twist-2 contribution to g_2

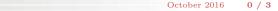
$$g_2^{WW}(x) = g_2^{\tau=2}(x) = -g_1^{\tau=2}(x) + \int_x^1 \frac{\mathrm{dy}}{y} g_1^{\tau=2}(y)$$

but we need only the leading twist $g_1^{\tau=2}$, not g_1^{exp} .

However, target mass and finite Q^2 corrections need to be made. The important twist-3 contribution to g_1 shows up as a target mass correction[?] in the Blumlein-Tkabladze relation

$$g_1^{\tau=3}(x) = \frac{4M^2x^2}{Q^2} \left[g_2^{\tau=3}(x) - 2 \int_x^1 \frac{\mathrm{dy}}{y} g_2^{\tau=3}(y) \right]$$
 (1)

Need to disentangle different twist contributions



Twist-2 TMCs

$$\begin{split} g_1^{exp}(x,Q^2) &= g_1^{\tau 2 + TMC}(x,Q^2) + g_1^{\tau 3 + TMC}(x,Q^2) + g_1^{\tau 4}(x,Q^2) + \dots \\ g_2^{exp}(x,Q^2) &= g_2^{\tau 2 + TMC}(x,Q^2) + g_2^{\tau 3 + TMC}(x,Q^2) + g_2^{\tau 4 + TMC}(x,Q^2) + \dots \end{split}$$

Target Mass Corrections

- Power corrections of order M^2/Q^2
- This power does not necessarily correspond to the twist (depending on how you define twist).

Following the latest JAM paper's notation:

Twist-2 TMC corrections to q_1

$$\begin{split} g_1^{(\tau 2 + TMC)}(x,Q^2) &= \frac{x}{\xi \rho^3} \; g_1^{(\tau 2)}(\xi,Q^2) + \left(\frac{\rho^2 - 1}{\rho^4}\right) \int_{\xi}^1 \frac{dz}{z} \Big[\frac{(x+\xi)}{\xi} - \frac{(3-\rho^2)}{2\rho} \ln\frac{z}{\xi}\Big] g_1^{(\tau 2)}(z,Q^2) \\ &= g_1^{(\tau 2)}(x,Q^2;M \to 0) \end{split}$$

where
$$\rho^2 = \left(1 + \frac{4M^2x^2}{Q^2}\right)$$

Twist-2 TMCs

Twist-2 TMC corrections to g_2

$$\begin{split} g_2^{(\tau 2 + TMC)}(x,Q^2) &= -\frac{x}{\xi \rho^3} g_1^{(\tau 2)}(\xi,Q^2) + \frac{1}{\rho^4} \int_{\xi}^1 \frac{dz}{z} \Big[\frac{x}{\xi} - (\rho^2 - 1) + \frac{3(\rho^2 - 1)}{2\rho} \ln \frac{z}{\xi} \Big] g_1^{(\tau 2)}(z,Q^2) \\ &= g_2^{WW}(x,Q^2;M \to 0) \end{split}$$

where
$$\rho^2 = (1 + \frac{4M^2x^2}{Q^2})$$

$$\begin{split} g_2^{WW} \Big[g_1^{(\tau 2)} \Big] &= -g_1^{\tau 2}(x) + \int_x^1 \frac{\mathrm{dy}}{y} g_1^{\tau 2}(y) \\ g_2^{WW} \Big[g_1^{(\tau 2 + \mathbf{TMC})} \Big] &= -g_1^{\tau 2 + \mathbf{TMC}}(x) + \int_x^1 \frac{\mathrm{dy}}{y} g_1^{\tau 2 + \mathbf{TMC}}(y) \\ g_2^{WW} \Big[g_1^{(\tau 2 + \tau \mathbf{3})} \Big] &\neq -g_1^{\tau 2 + \tau \mathbf{3}}(x) + \int_x^1 \frac{\mathrm{dy}}{y} g_1^{\tau 2 + \tau \mathbf{3}}(y) \end{split}$$

Twist-3 TMCs

Twist-3 TMC corrections to g_1

$$g_1^{\tau=3}(x) = \frac{4M^2x^2}{Q^2} \left[g_2^{\tau=3}(x) - 2 \int_x^1 \frac{\mathrm{dy}}{y} g_2^{\tau=3}(y) \right]$$
 (2)

B & T emphasized the need to take full account of this type of term if twist-3 terms are kept in the cross sections. I am not sure if this means using this equation, or the more accurate equation which has terms of high order in M^2/Q^2

Backup Slides

Simultaneously disentangling

Q^2 evolution of twist-3 distributions

From the work of Braun, et.al. [?], we have the (large N_c) evolution equations

$$Q^{2} \frac{d}{dQ^{2}} \Delta q_{T}^{+,S} = \frac{\alpha_{s}}{4\pi} \int_{x}^{1} \frac{dy}{y} \left(P_{qq}^{T}(x/y) \Delta g_{T}^{+,S}(y) + P_{qg}^{T}(x/y) \Delta g_{T}(y) \right)$$

$$Q^{2} \frac{d}{dQ^{2}} \Delta g_{T} = \frac{\alpha_{s}}{4\pi} \int_{x}^{1} \frac{dy}{y} \left(P_{gg}^{T}(x/y) \Delta g_{T}(y) \right)$$

$$g_{2}^{\tau=3,LL}(x,Q^{2}) = \frac{1}{2} \sum_{q} e_{q}^{2} \int_{x}^{1} \frac{dy}{y} \left[\Delta q_{T}^{+}(y) \right]$$

In [?] they also show that g_2 can be approximately evolved as a non-singlet distribution due to the very small gluon contribution (which only shows up at small x)

$$\frac{\mathrm{d}}{\mathrm{d} \ln Q^2} g_2^{NS}(x, Q^2) = \frac{\alpha_s(Q^2)}{4\pi} \left(\int_x^1 \frac{dz}{z} P^{NS}(x/z) g_2^{NS}(z, Q^2) \right)$$

Ignoring contributions beyond twist-3 effects, we see that $g_1(x)$ and $g_2(x)$ are completely defined when Δq along with $g_2^{\tau=3}$ (or equivalently Δq_T and Δq_T) are given at some input scale Q_0^2 .