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I. FITTING HIGHER TWISTS

1. Without BC sum rule

2. With BC sum rule

3. Without Wthreshold

4. With Wthreshold

A. Twist-3 distribution: D(x)

The twist-3 distribution associated with the reduced matrix element,

d2 = 2

∫ 1

0

x2D(x)dx = 2d3 , (1)

is used to calculate the twist-3 contribution to the g2 structure function as

gτ32 (x) = D(x)−
∫ 1

x

D(y)

y
dy (2)

in the massless limit. A more complicated expression exists which includes the target mass effects. We parameterize
gτ32 (x) as a function of x with p parameters and we would now like to seek constraints to limit the number of free
parameters.

Next we want to solve for D(x) so we take the derivative of both sides of the equation ?? and dropping the indices
on g

d

dx
g =

D(x)

x
+

d

dx
D(x) (3)

and solve for D(x) with the boundary condition that the function vanishes at x = 1. This yields the solution

xD(x) = −
∫ 1

x

y g′(y) dy (4)

This equation provides a constraint on the parameters which can be seen as removing the constant term in a polynomial
expression due to the derivative.

g(x) =

4∑
i=0

pix
i (5)

The BC sum rule can provide a constraint too:∫ 1

0

dxgτ32 (x) = 0. (6)

Applying the constraints gives

p0 =
p(2)

3
+
p(3)

2
+

3p(4)

5
(7)

p1 =
1

30
(−40p(2)− 45p(3)− 48p(4)) (8)

B. W threshold

If below Wthresh we force the twist 3 distribution D(xthresh)→ 0 then we find that

xD(x) = −
∫ 1

x

y g′(y) dy +

∫ 1

xthresh

y g′(y) dy (9)

where

xthresh = Q2/(M2
thresh −M2

p +Q2). (10)
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C. As a function of W

If we want to use W

g(x) =

2∑
i=0

pi
( 1

W

)i
(11)

the constrained parameters are

p0 = −
p(2)

(
Mp
√

Mp2 −Q2
(

Mp2 log(Q2)−Q2 log
(

Q2
Mp2

)
− 2Mp2 log(Mp)

)
+
(
Mp2 −Q2

)2
sinh−1

(√
Mp2

Q2 − 1
))

Mp
(
Mp2 −Q2

)3/2 (
Mp
√

Mp2 −Q2 sinh−1
(√

Mp2

Q2 − 1
)
−Mp2 + Q2

)
(12)

p1 =
p(2)

(
−Mp2 log(Q2)−Mp2 + 2Mp2 log(Mp) + Q2

)
Mp

(
−Mp

√
Mp2 −Q2 sinh−1

(√
Mp2

Q2 − 1
)

+ Mp2 −Q2
) (13)

(14)

however calculating these for higher powers becomes unwieldy. It is better to use a parameterization in x.

II. EVOLUTION OF HIGHER TWISTS

In [? ] they also show that gτ32 can be approximately evolved as a non-singlet distribution due to the very small
gluon contribution (which only shows up at small x)

d

d lnQ2
gNS2 (x,Q2) =

αs(Q
2)

4π

∫ 1

x

dz

z
PNS(x/z)gNS2 (z,Q2) (15)

where the splitting function is

PNS =
[ 4CF

1− z

]
+

+ δ(1− z)
[
CF +

1

Nc

(
2− π2

3

))
− 2CF (16)

and CF = (N2
c − 1)/(2Nc).

Using QCDNUM with this custom kernel implemented I can reproduce the LCWF distributions shown in FIG. 1
[? ].

III. FIT RESULTS

Looking at the results to fitting just the SANE data shown in FIG. 2, the SANE-BETA data in the third panel
with small error bars don’t seem to be fit very well.

However raising the Wmin on the fit data and including the world data helps pull the curve down for these points.
This is shown in FIG. 5,

A. Wmin = 1600 MeV

MinFCN = 149.632

NDf = 118

p− value = 0.97
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FIG. 1. Test of evolution using LCWF for comparison against the result of Braun, et.al.[? ]

B. Wmin = 1800 MeV

MinFCN = 89.5586

NDf = 102

p− value = 0.19

IV. CONSTANT Q2 DATA

See FIG. 6 and 7.

V. MOMENTS

A2 = γ
gT
F1

=

(
2Mx√
Q2

)
g1 + g2
F1

(17)

I(Q2) =

∫ 1

0

dxx2(2g1 + 3g2)

=

∫ 1

0

dxx2(3gT − g1)

=

∫ 1

0

dxx2(3
F1

γ
A2 − g1)

(18)

Mn
1 (Q2) =

ξn+1

x2

(
g1(x)

(
x

ξ
− n2ξxy2

(n+ 2)2

)
− (4n)x2y2g2(x)

n+ 2

)
(19)



5

W
1 2 3 4 5 6 7 8 9 10

 <
 1

.7
5

2
0.

65
 <

 Q

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

W
1 2 3 4 5 6 7 8 9 10

 <
 2

.8
5

2
1.

75
 <

 Q

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

W
1 2 3 4 5 6 7 8 9 10

 <
 3

.9
5

2
2.

85
 <

 Q

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

W
1 2 3 4 5 6 7 8 9 10

 <
 5

.0
5

2
3.

95
 <

 Q

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

FIG. 2. Result using only SANE data and a low Wmin = 1500 MeV. The black circles are SANE-BETA and the black squares
are SANE-HMS.

where y2 = M2/Q2.

Mn
2 (Q2) =

ξn+1

x2

(
xg1(x)

ξ
+ g2(x)

(
nx2

(n− 1)ξ2
− nx2y2

n+ 1

))
(20)

The moments above are just definitions. The structure functions inserted into each depend on the order in twist
one wishes to examine. If we restrict the analysis to twist-3 we define the input structure functions to be

g1,2 ≡ gτ21,2 + gτ31,2 . (21)

The Nachtmann moments were derived in the twist-3 OPE analysis and their usefulness becomes apparent when these
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FIG. 3. Result using world data with Wmin = 1600 MeV. The black circles are SANE-BETA and the black squares are
SANE-HMS.

structure functions used

M3
2 (Q2) = d3

'
∫
dx
[1

2
x2(2g1(x) + 3g2(x))

− 3

4
y2
(
x4(4g1(x) + 5g2(x))

)
+

3

2
x6y4(6g1(x) + 7g2(x)) +O

(
y6
) ]

= d2/2 +O
(
d8 y

6
)

(22)

where the higher order terms in the last equation appear only due finite series expansion.

Note that a twist-4 OPE analysis would spoil the Nachtmann moments like the twist-3 OPE does the WW relation.
Reduced twist-4 matrix elements would appear at all higher orders in y2.
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FIG. 4. Result using world data with a higher Wmin = 1700 MeV. The black circles are SANE-BETA and the black squares
are SANE-HMS.

I(Q2) ' d2 + 3y2d4 + 6y4d6 +O
(
d8 y

6
)

(23)

lim
M→0

M3
2 (Q2) =

I(Q2)

2
=
d2
2

= d3 (24)
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FIG. 5. Result using world data with Wmin = 1800 MeV. The black circles are SANE-BETA and the black squares are
SANE-HMS.
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FIG. 6. Corrections for constant Q2
0 = 3 (GeV/c)2 with the fit using Wmin = 1600 MeV (left) and Wmin = 1800 MeV (right).

The upper panel shows the difference between A2 calculated at each data point’s Q2
i and the constant Q2

0, the middle pannel
shows the difference Q2 −Q2

i , and the lower panel shows the difference between the measured A2 and the calculated A2 at Q2
i .
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FIG. 7. Data with a constant Q2 = 3 (GeV/c)2 correction applied from the fit using Wmin = 1600 MeV (left) and Wmin = 1800
MeV (right).
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FIG. 8. Moments from A2 fit with Wmin = 1600 MeV and using statistical polarized PDFs (left) and the JAM polarized PDFs.
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FIG. 9. Moments from A2 fit with Wmin = 1800 MeV and using statistical polarized PDFs (left) and the JAM polarized PDFs.
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FIG. 10. Moments extracted directly from the data (need to update this result).


