HKS/HES Collaboration meeting

Tomislav Ševa,
Physics department, University of Zagreb
Outline

– Replay engine changes
– Particle identification
– HDC resolution
– Data summary
Replay change summary

HKS drift chamber

Changes made:
- Start time calculation\(
ightarrow\) resolution, chi2
- Inefficiency of space point selection \(\rightarrow\) less reconstructed tracks
- Calibration of HDC plane position
- Calibration of drift time to drift distance map
Replay change summary

Enge drift chamber
Changes made:
- Start time calculation \rightarrow \text{resolution, chi2}
- multiplicity
- Calibration of drift time to drift distance map

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>OLD code</th>
<th>NEW code</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>1000000</td>
<td>301</td>
</tr>
<tr>
<td>Entries</td>
<td>37862</td>
<td>31065</td>
</tr>
<tr>
<td>Mean</td>
<td>1.525</td>
<td>2.629</td>
</tr>
<tr>
<td>RMS</td>
<td>1.290</td>
<td>4.237</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chi2</th>
<th>OLD code</th>
<th>NEW code</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>1000000</td>
<td>301</td>
</tr>
<tr>
<td>Entries</td>
<td>37862</td>
<td>31065</td>
</tr>
<tr>
<td>Mean</td>
<td>4.76</td>
<td>2.829</td>
</tr>
<tr>
<td>RMS</td>
<td>6.31</td>
<td>4.237</td>
</tr>
</tbody>
</table>
PID tools

- Changes of position and slope parameters of AC and WC
- Recalibrated HKS hodoscopes
Particle identification

• Goal:
 – Maximize number of surviving kaons
 – Get the cleanest possible sample

• PID tools:
 – Aerogel Cerenkov
 – Water Cerenkov
 – Particle beta
 – Coincidence time

• PID analysis:
 – Beta spectrum
 – Coincidence time
 – Λ,Σ events
Aerogel Cerenkov

- Performance of Tubes and layers varied
- Normalize AC number of photoelectrons with unbiased (pion) events

\[NPE_N(AC : i - k) = \frac{NPE_{peak}(AC : i - m)}{NPE_{peak}(AC : i - k)} NPE(AC : i - k), \]

\(NPE_N \) - normalized number of photoelectrons; i-layer number; k-tube;

- Kaon selection (cut condition) used is:

\[AC1norm + AC2norm + AC3norm < X_{AC} \]
Water Cerenkov

- Performance of Tubes and layers varied
- Normalize WC number of photoelectrons with kaon events
 - If multiple WC segments on particle trajectory, first normalize each tube signal and then sum them together

- Kaon selection (cut condition) used is:

\[WC1_{\text{norm}} + WC2_{\text{norm}} > X_{WC} \]
Particle beta

- for PID difference between time of flight beta and beta reconstructed is used
- Fluctuations in time of flight beta on run to run basis were noticed (left fig)
- There is linear correlation between pion and kaon offset (right fig)

- Kaon selection (cut condition) used is:

\[|\beta_{TOF} - \beta_{K^+} - offset| \leq X_\beta \]
PID with beta spectrum

- Impose PID cut on AC, WC
- Fit beta spectrum with three functions for proton, kaon and pion events
- Extract number of kaons, protons and pions
- Calculate kaon survival rate, proton and pion rejection for the set of cut conditions \(X_{AC}, X_{WC}, X_\beta \)
PID with coincidence time

- Impose PID conditions (X_{AC}, X_{WC}, X_β)
- Fit coincidence time with 9 Gaussians
- Extract number of kaons

$$N_{K^+} = N_{\text{True}} - \frac{1}{8} \sum_{i=1}^{8} N_{\text{Accidental},i}$$

- Extract S/A ratio
PID with coincidence time

- Apply AC, WC and beta cuts on coincidence time distribution
- Fit it with 9 Gaussians
- Calculate number of events in each peak
PID analysis on CH2 data

- CH2 data is used in the spectrometer calibration
- In the calibration important are:
 - Number of Λ, Σ events
 - good S/A ratio
HDC resolution – focal plane variables

- Monte Carlo simulation with real data reconstructed tracks and residual distributions
 - Use real data HDC information
 - Simulate drift distance errors by using residual distribution
- Simulate HDC information
- Reconstruct trajectories
- Calculate errors of the focal plane variables (X,Xp,Y,Yp)
HDC resolution – reconstructed momentum

- Momentum is reconstructed from focal plane variables
- Obtained momentum resolution 210 (12) keV
- Expected 180 keV
Momentum resolution across focal plane
Correction factors-drift chambers

- EDC and HDC tracking efficiency
- Discard tracks with high Chi2
- Create tracks by other detectors, check if EDC(HDC) found it as well
Data summary

<table>
<thead>
<tr>
<th>Target</th>
<th>Data Set</th>
<th>Beam Charge [mC]</th>
<th>Current Ave [μA]</th>
<th>Trigger</th>
<th>Grouping</th>
<th>Runs</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH$_2$</td>
<td>#1</td>
<td>149.99</td>
<td>1.44</td>
<td>WC(T@B)@AC(T ⊕ B)</td>
<td>OFF</td>
<td>55838-56163</td>
</tr>
<tr>
<td></td>
<td>#2</td>
<td>246.24</td>
<td>1.38</td>
<td>WC(T@B)@AC(T ⊕ B)</td>
<td>ON</td>
<td>56283-57334</td>
</tr>
<tr>
<td>Li$_6$</td>
<td>#3</td>
<td>2543.6</td>
<td>21.0</td>
<td>1Y@WC(T@B)@AC(T ⊕ B)</td>
<td>ON</td>
<td>60623-61035</td>
</tr>
<tr>
<td>Li$_7$</td>
<td>#4</td>
<td>3764.6</td>
<td>25.2</td>
<td>1Y@WC(T@B)@AC(T ⊕ B)</td>
<td>ON</td>
<td>60235-61065</td>
</tr>
<tr>
<td>Be$_9$</td>
<td>#5</td>
<td>2267.2</td>
<td>17.9</td>
<td>WC(T@B)@AC(T ⊕ B)</td>
<td>ON</td>
<td>56476-57528</td>
</tr>
<tr>
<td></td>
<td>#6</td>
<td>9.5</td>
<td>18.9</td>
<td>WC(T@B)@AC(T ⊕ B)</td>
<td>ON</td>
<td>57529-57538</td>
</tr>
<tr>
<td></td>
<td>#7</td>
<td>6.8</td>
<td>17.2</td>
<td>WC(T@B)@AC(T ⊕ B)</td>
<td>ON</td>
<td>57542-57545</td>
</tr>
<tr>
<td></td>
<td>#8</td>
<td>1311.8</td>
<td>18.0</td>
<td>1Y@WC(T@B)@AC(T ⊕ B)</td>
<td>ON</td>
<td>59316-59800</td>
</tr>
<tr>
<td>B$_{10}$</td>
<td>#9</td>
<td>3248.2</td>
<td>26.3</td>
<td>1Y@WC(T@B)@AC(T ⊕ B)</td>
<td>ON</td>
<td>60812-60961</td>
</tr>
<tr>
<td></td>
<td>#10</td>
<td>499.4</td>
<td>13.2</td>
<td>WC(T@B)@AC(T ⊕ B)</td>
<td>OFF</td>
<td>55911-56230</td>
</tr>
<tr>
<td></td>
<td>#11</td>
<td>18.4</td>
<td>16.7</td>
<td>WC(T@B)@AC(T ⊕ B)</td>
<td>OFF</td>
<td>56229-56230</td>
</tr>
<tr>
<td></td>
<td>#12</td>
<td>20.4</td>
<td>17.2</td>
<td>WC(T@B)@AC(T ⊕ B)</td>
<td>ON</td>
<td>56355-57200</td>
</tr>
<tr>
<td></td>
<td>#13</td>
<td>646.3</td>
<td>19.6</td>
<td>WC(T@B)@AC(T ⊕ B)</td>
<td>ON</td>
<td>57547-57727</td>
</tr>
<tr>
<td>C$_{12}$</td>
<td>#14</td>
<td>6223.1</td>
<td>20.4</td>
<td>WC(T@B)@AC(T ⊕ B)</td>
<td>ON</td>
<td>58410-60561</td>
</tr>
<tr>
<td></td>
<td>#15</td>
<td>646.3</td>
<td>23.4</td>
<td>WC(T@B)@AC(T ⊕ B)</td>
<td>ON</td>
<td>58410-60561</td>
</tr>
<tr>
<td></td>
<td>#16</td>
<td>1130.7</td>
<td>23.4</td>
<td>WC(T@B)@AC(T ⊕ B)</td>
<td>ON</td>
<td>58410-60561</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Target</th>
<th>Thickness [mg/cm2]</th>
<th>Beam Charge [mC]</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH$_2$</td>
<td>460</td>
<td>366.3</td>
<td>for mass calibration</td>
</tr>
<tr>
<td>Li$_6$</td>
<td>164</td>
<td>2545.1</td>
<td>production</td>
</tr>
<tr>
<td>Li$_7$</td>
<td>189</td>
<td>3828.7</td>
<td>production</td>
</tr>
<tr>
<td>Be$_9$</td>
<td>188</td>
<td>3657.8</td>
<td>production</td>
</tr>
<tr>
<td>B$_{10}$</td>
<td>114</td>
<td>3249.1</td>
<td>production</td>
</tr>
<tr>
<td>C$_{12}$</td>
<td>100</td>
<td>14940.8</td>
<td>for mass calibration and production</td>
</tr>
<tr>
<td>Si$_{28}$</td>
<td>65</td>
<td>13859.8</td>
<td>production</td>
</tr>
<tr>
<td>V$_{51}$</td>
<td>59.6</td>
<td>779.0</td>
<td>for QF rate study</td>
</tr>
<tr>
<td>Y$_{89}$</td>
<td>56</td>
<td>585.7</td>
<td>for QF rate study</td>
</tr>
</tbody>
</table>

Table 2.11: Data acquisition settings during the E01-011 experiment.
Summary

Thanks to HKS/HES collaboration I successfully defended my thesis!!!

My thesis:
• Detailed description of analysis
• Detector performance and efficiencies
• PID cut efficiencies
• Cross section