

Radiation Levels Generated in the Hall and in the Environment during the HKS Experiment

Pavel Degtiarenko Radiation Physics Group RadCon/ESH, November 2024

ERR Charge #6

- Are the radiation levels expected to be generated in the hall acceptable?
- Is any local shielding required to minimize the effects of radiation in the equipment?

Role of RadCon

- Our work is to make JLab compliant with CFR Title 10 Part 835 – Occupational Radiation Protection
- Includes radiation protection of Life and Environment
- Important part of the job is evaluation of new projects at Jlab, optimizing designs for ALARA purposes, making sure they would satisfy the design criteria and JLab policies
- Protection of Equipment is not a direct RadCon responsibility, but our tools can be used for that goal in collaboration with the Experiment's Subject Matter Experts
- Synergy between the RadCon and other departments, ALARA process helps everyone

Law Requirements: Design and Control

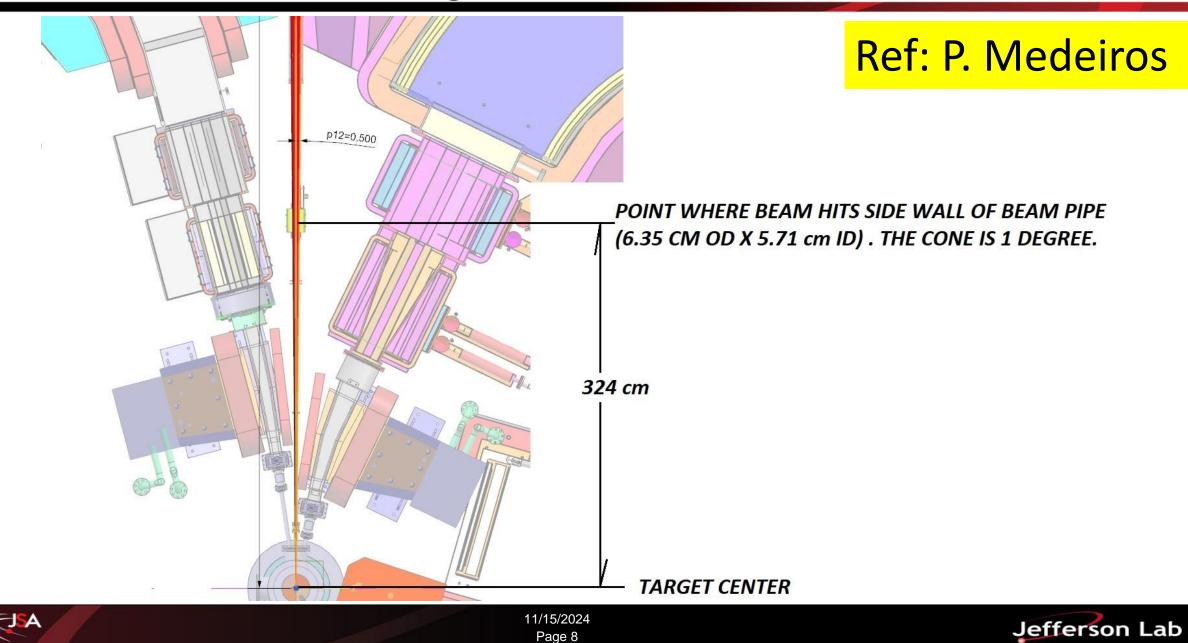
- § 835.1001: maintain radiation exposure in controlled areas ALARA through engineered and administrative controls
- § 835.1002 sets objectives for facility design and modifications
 - use optimization methods to achieve ALARA goals in developing and modification of facility design and physical controls
 - design objective for controlling personnel exposure: keep the dose accumulation ALARA, below 10 mSv (1 rem) in a 2000-hour work year for radiological workers
 - avoid releases of airborne radioactive material to the workplace atmosphere under normal conditions
 - Include in the design, and in material selection, features that facilitate operations, maintenance, decontamination, and decommissioning
- § 835.1003: maintain *occupational dose* to general employees within limits and ALARA

Environmental Design Goals

- Practical criteria based on design goals in routine beam operations
 - Yearly accumulated dose to the public beyond the JLab Accelerator fence should be below 10 mrem
 - Extremely conservative, but it is a good neighbor policy: the dose increase is less than 10% of natural radiation background in our area
- Every upcoming experiment's contribution to the environmental dose is evaluated in the process of "Radiation Budgeting"
 - During the design stage, its contribution to the dose accumulation at the boundary is calculated and summed for all experiments to be run during a calendar year
 - If the sum exceeds 10 mrem (the "Budget") then the experiments contributing the most of the dose are recommended for detailed review

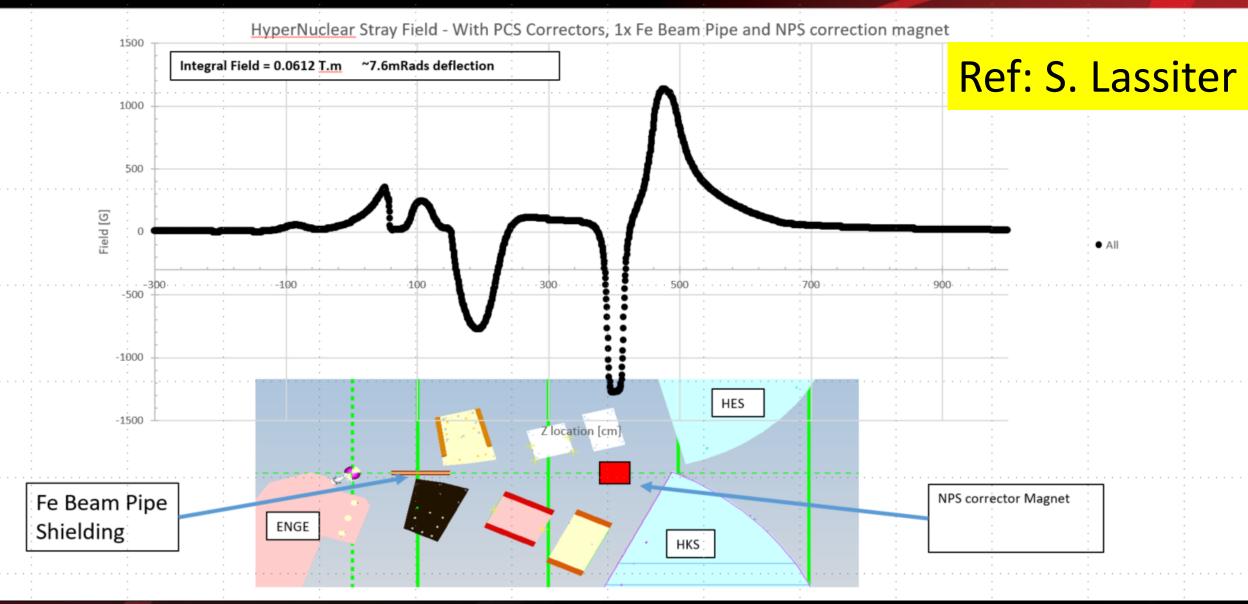
Overview of the Radiation Budgeting

- Realistic shielding calculations conservative design approach using ALARA Design Goals as defined in the RadCon Manual
- Overall confidence in shielding calculations for typical setups
 - In electromagnetic processes: as needed (typical accuracy 5 10%)
 - In photo- and electronuclear reactions: factor 1.5-2.0 due to lack of experimental data and difficulties in the model development
 - The situation is improving as we have the opportunity to use both FLUKA and GEANT Monte Carlo codes for independent verification.
- Optimizing shielding design by finding ALARA solutions for new experimental setups; minimizing dose accumulation in the environment; helping experimentalists to minimize the detector backgrounds and minimize material activation
- Monitoring radiation environment, verifying calculations and making adjustments if necessary. "Balancing yearly budget"


Radiation Budget Calculation Tools

- JLab standard analytical calculation tool ELEC5 was developed by Geoffrey Stapleton in late 1990s and then converted to the Excel Rad. Budget spreadsheet workbook
- Every experiment is split into "Setups", each setup characterized by the unique combination of beam energy + current, target material + thickness, beamline parameters, and planned beam time
- Standard Hall A or Hall C geometries assumed, no magnetic fields in the beam line (a "typical" experiment)
- Excel Rad. Budget calculations typically give good "1st-Order " values
- More complex experiments with non-standard beam lines and the presence of magnetic fields may require detailed MC simulations

Radiation Budget for HKS: Beam Line

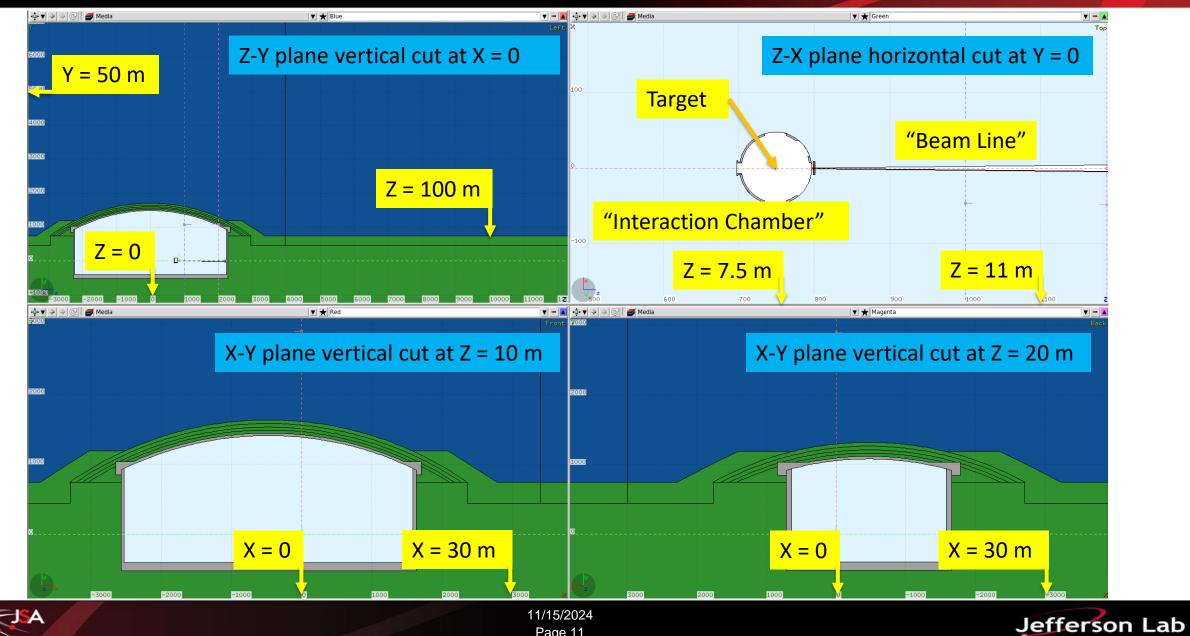


ELEC5 Radiation Budget for HKS

Setup #9

Hall: Exp. #	C HKS Group	rev:				RAD			BU	DGE		ORM e of liaison: T. Gogami	page: 1 of 1	2.2 GeV, 25 mA
	etup number	Itv.	1	2	3	4	5	6	7	8	9	t of haison. T. Gogann		Pb Target
eam	current	GeV uA(CW)	2.2 2.0	50.0	2.2 50.0	2.2 50.0	2.2 50.0	2.2 50.0	2.2 50.0	2.2 50.0	25.0		totals:	150 mg/cm ²
exp't target		mg/cm2	C 386 0.0	Li 1 100 0.0	Be 100 0.0	B 0 100 0.0	150	150	Ca40 150 0.0	Ca48 150	Pb 150 0.0			
	dist. to pivot Z A	m	6 0.0 6 12	3	0.0 4 9	0.0 5 11	0.0 6 12	0.0 13 27	20 40	0.0 20 48	82			BL Opening
add'l target 1	element thickness dist. to pivot	mg/cm2	H 64 0.0											R = 2.85 cm at Z = 3.24 m
	Z A		1	0	0	0	0	0	0	0	0			Z – 5.24 III
	dist. to pivot	cm m	2.85 3.24 0.50	2.85 3.24 0.50	2.85 3.24 0.50	2.85 3.24 0.50	2.85 3.24 0.50	2.85 3.24 0.50	2.85 3.24 0.50	2.85 3.24 0.50	2.85 3.24 0.50			1000 PAC hours
time	× /	hours days	144 6.0	120 5.0	384 16.0	72 3.0	168 7.0	672 28.0	456 19.0	552 23.0	1000 41.7		3568 148.7	(48 days)
ose rate at	installation time method 1	hours days urem/hr	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	1.23 μrem/h at
	method 2 conservative	urem/hr urem/hr urem	0.06	0.24	0.27 103	0.29	0.50	0.72	0.98 445	0.84	1.23 1231		2868	RBM-4
6 of annual dos	se budget	%	0.1	0.3	1.0	0.2 % of all	0.8 owed do	4.8 ose for th	4.5 e total t	4.6 ime	12.3		28.68 70.41	
	date fo	orm issued:	Nov	vember	If > 2	% of allow 00%, disc 124		t with Phy	sics Res	earch El	H&S office Itiarenk		70.41	12% of 10 mrem
∧2L∋ (nn tostieu.		ember	10, 20						/15/202	Tota	al 29% 👝	
											Page 9			Jefferson La

Sum of Stray Fields with Front Fe beam line shielding



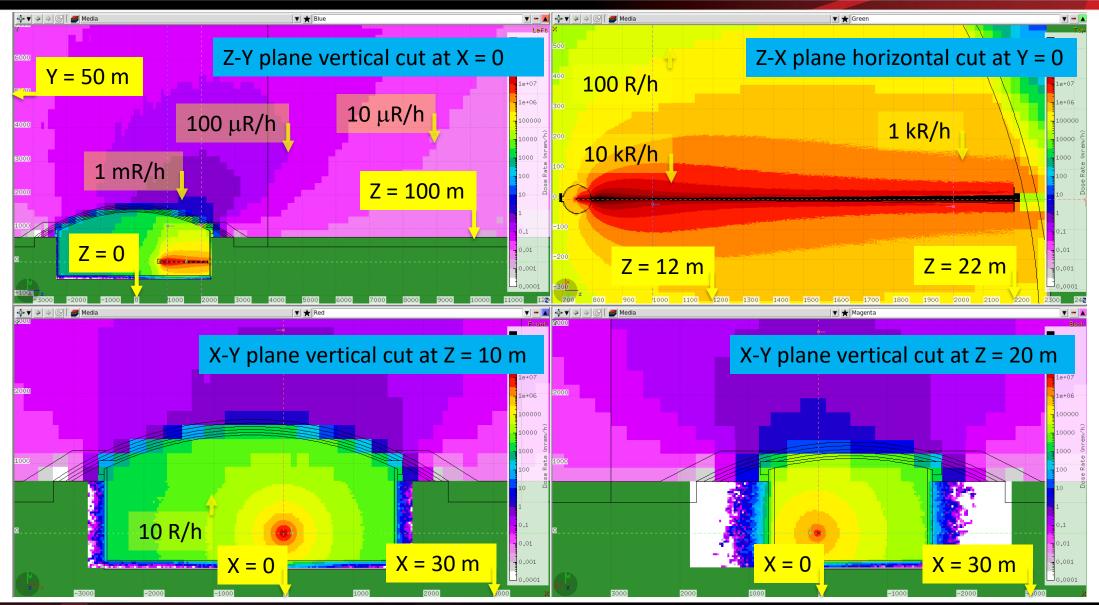
11/15/2024 Page 10

Jefferson Lab

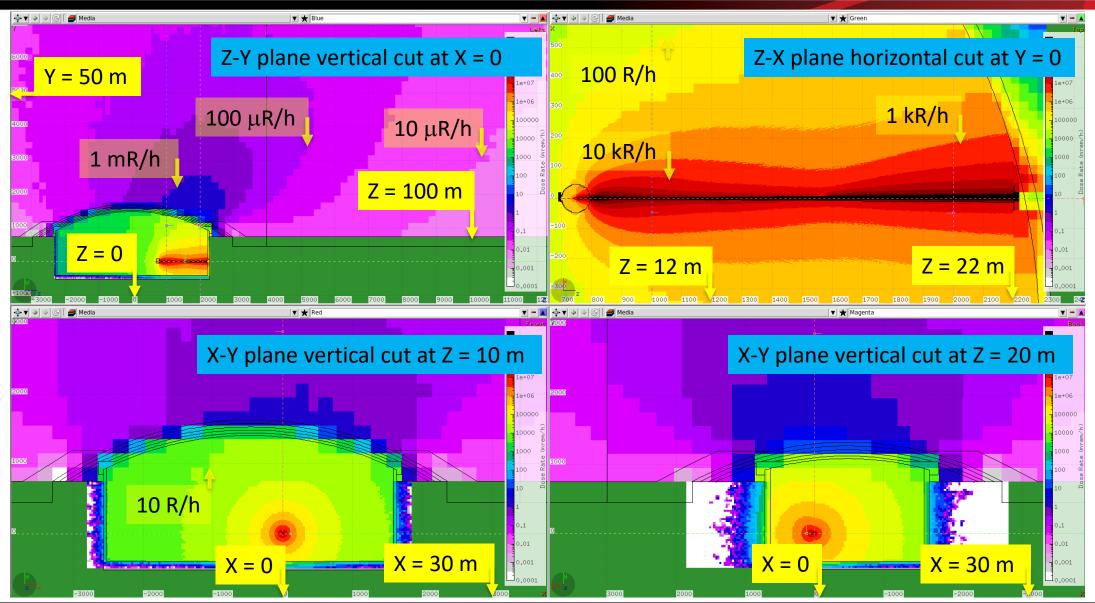
FLUKA Model for the HKS BL in Hall C

Page 11

FLUKA Model for the HKS BL in Hall C

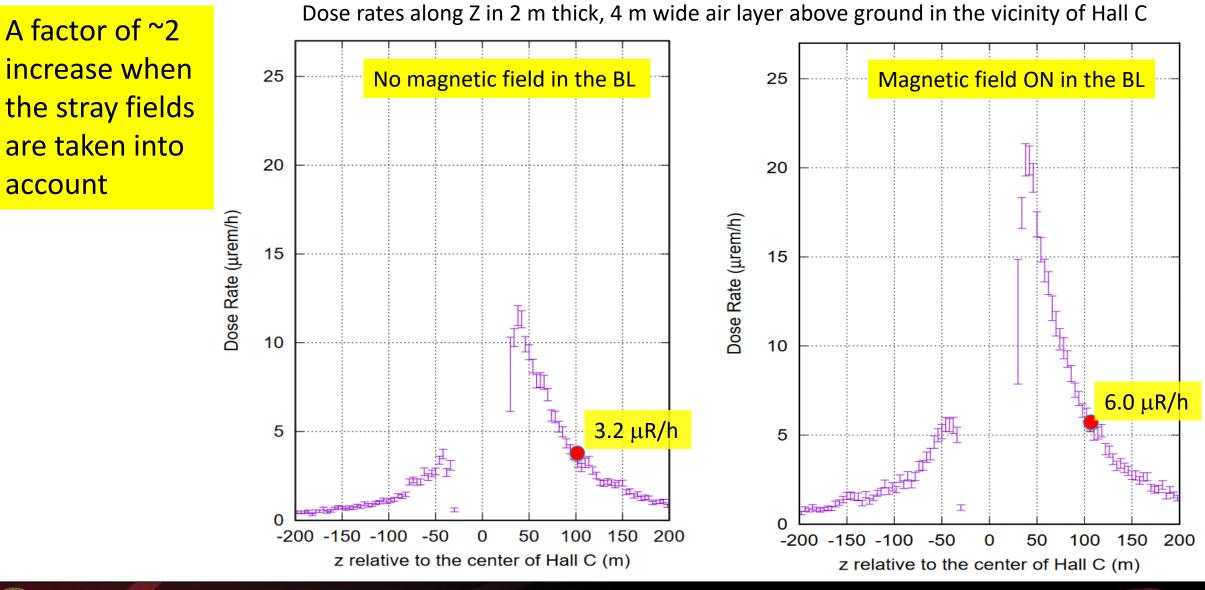

- Realistic Model of the Hall enclosure, including roof and the surrounding space
- Simple model for the Target and the Beam Line as a cone with the opening angle the same as in ELEC5 calculations
- Option to estimate effects of the stray magnetic fields in the beam line
- A first step to the full HKS beam line simulation that would need real geometry
- Allowed to compare with the ELEC5 results for the dose rates at the boundary, evaluate prompt radiation fields in the Hall at the 1st order, and evaluate beam line activation
- No model for the beam dump tunnel and beam dump body

Prompt Dose Rates During Setup #9



11/15/2024 Page 13

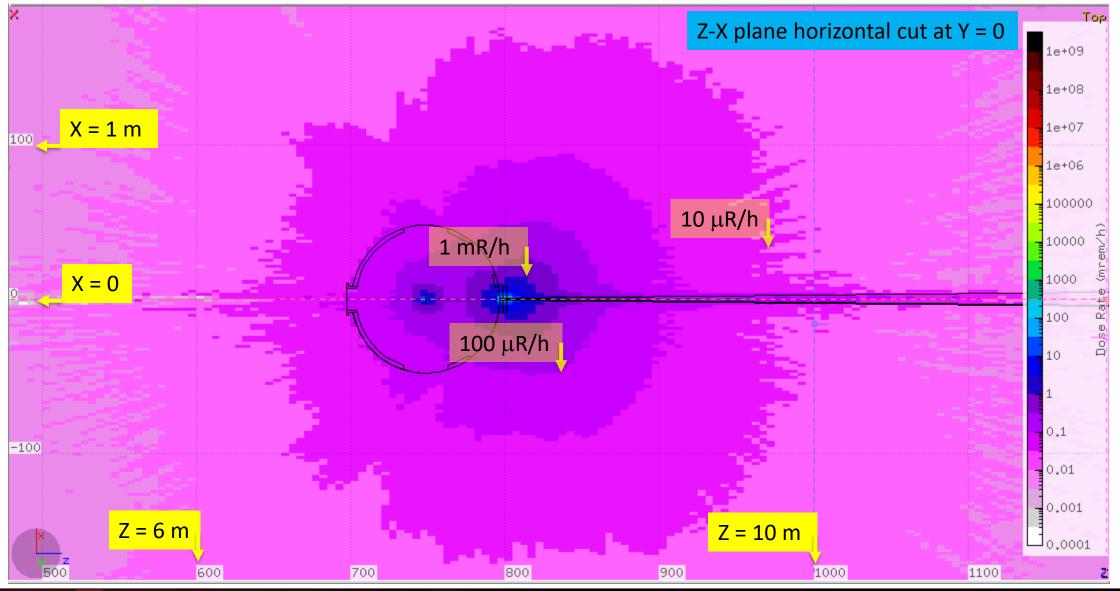
Prompt Dose Rates During Setup #9



11/15/2024 Page 14

Jefferson Lab

Boundary Dose Rates During HKS Setup #9



11/15/2024 Page 15

Jefferson Lab

Activation in the Hall 1 hour after stop

11/15/2024 Page 16

ERR Charge #6

- Are the radiation levels expected to be generated in the hall acceptable?
 - First preliminary evaluations tell Yes, however the final beam line design still needs to be evaluated
- Is any local shielding required to minimize the effects of radiation in the equipment?
 - The answer is also Yes. It will be dependent on the final design of the beam line and detailed calculations taking into account stray magnetic fields.
 - Damage to electronics and materials in the Hall need to be evaluated by the Experiment
- Dose rate accumulation at the CEBAF boundary is expected to be reasonable for 2-yr operations, and could be optimized

