CT Experiment (E12-06-107) Run Plan Overview

January 15, 2018

Table 1: Kinematics for the run.

Q^2	E_e	$\theta_{e'}^{HMS}$	p_{HMS}	θ_{SHMS}	p_{SHMS}	notes
${f GeV^2}$	${ m GeV}$	\deg	${ m GeV/c}$	\deg	${ m GeV/c}$	
8.01	6.4	45.07	2.131	17.13	5.122	overlap with E94139, first 3 pass kinematics, 1% sta
14.76	10.6	41.8	2.736	12.02	8.753	First 5 pass kinematics 2-2.5% stat
12.43	10.6	31.5	3.978	16.08	7.502	Second 5 pass kine, run with 2% stat
10.02	10.6	24.48	5.259	20.55	6.209	Third 5 pass kine, run with 1.4% stat
10.02	10.6	24.48	5.259	17.55	6.209	proton angle scan, 2.5% stat (time permitting)
10.02	10.6	24.48	5.259	23.55	6.209	proton angle scan, 2.5% stat (time permitting)

All time estimates in the overview assume 50% Hall C + Accelerator efficiency, including configuration change time and a beam current of 65 μ A.

Last shift before Experiment begins:

- 1. All spectrometer magnets on to correct polarity and cycled to initial values. Spectrometers also at initial angles.
- 2. Check that no new obstructions have appeared since the spectrometer angles were certified. For example, ladders, RadCon survey ropes, etc.
- 3. Double-check HMS/SHMS Gas Cerenkov pressure is at correct value.
- 4. Verify there are no obstructions between the detectors (ie, no WC covers, no dangling cables, etc.) on both spectrometers.
- 5. Verify there are no unusual obstructions between the scattering chamber and the spectrometer front windows. Make sure any protective windows on the scattering chamber have been removed.
- 6. Lock up the hall.
- 7. Clean up the counting house. Make sure all terminals, consoles, and printers are alive and well.
- 8. Take a cosmic run and look for problems.

$6.4~{\rm GeV}$ data taking: $60~{\rm beam}$ hours scheduled, need $8~{\rm hrs}$ for calibration and $52~{\rm hrs}$ (at $50\%~{\rm eff.}$) for production.

- 1. Calibrations \Rightarrow 8 hours
 - Verify magnets properly cycled Beam energy measurement Harp scan
 - Detector checkout with 3/4 trigger, and long run for detector calibration
 - BCM Calibration (unless one was completed very close to the start of experiment)
 - ep elastic coincidences, (Heepcheck) Q^2 =4.0 GeV², HMS at 4.263 GeV/c, 22.10 deg, SHMS at 2.928 GeV/c, 33.21 deg ,expected rate few Hz 65 μ A current. (at least 3 hrs).
 - verify timing of all triggers
- 2. $Q^2 = 8.0 \, (\text{GeV/c})^2$ production, goal: 10000 cnts
 - \bullet LH + MT 12 hrs + 4 hrs
 - C 36 hrs

10.6 GeV data taking: 300 beam hours scheduled, need 8 hrs for calibration and 292 hrs (at 50% eff.) for production.

- 1. Calibrations \Rightarrow 8 hours
 - $\bullet\,$ Verify magnets properly cycled Beam energy measurement Harp scan
 - Detector checkout with 3/4 trigger, and long run for detector calibration
 - BCM calibration
 - ep elastic coincidences (Heepcheck), $Q^2=9.5~{\rm GeV^2}$, HMS at 5.5394 GeV/c, 23.20 deg, SHMS at 5.9250 GeV/c, 21.61 deg ,expected rate—few Hz 65 μ A current. (at least 4 hrs)
- 2. $Q^2 = 14.76 \text{ (GeV/c)}^2 \text{ production, goal: } 2000 \text{ cnts}$
 - \bullet LH + MT 51 hrs + 17 hrs
 - C 122 hrs
- 3. configuration change 5 hrs
- 4. $Q^2=12.43~({\rm GeV/c})^2$ production, goal: 2500 cnts
 - \bullet LH + MT 12 hrs + 4 hrs
 - C 24 hrs
- 5. configuration change 5 hrs
- 6. $Q^2 = 10.02 \; (\text{GeV/c})^2 \; \text{production, goal: } 4500 \; \text{cnts}$
 - LH + MT 6 hrs + 2 hrs

- C 12.0 hrs
- 7. $Q^2 = 10.02 \; (\text{GeV/c})^2$ proton angle scan, goal: 2500 cnts
 - \bullet C 12.0 hrs, proton angle scan 1, 2500 cnts
 - $\bullet\,$ C 20.0 hrs, proton angle scan 2, 2500 cnts