Resolution and Focal Plane Patterns in SHMS

Jure Bericic May 12, 2016

Reconstruction Resolution – 1a

pointtarg_20deg_2gev_wc_msct_cer_sieve

-20

-10

10

20

-10

0

10

20

30

delta versus deltai delta-deltai versus deltai • delta 450 400 350 300 delta 250 200 150 -0.6 10 100 -0.6 50 -01 -10deltai deltai Fitted value of par[1]=Mean Fitted value of par[2]=Sigma 0.08 0.0 0.4 0.04 0.3 -0.02 -0.02-0.04

Reconstruction Resolution – 1b

pointtarg_20deg_2gev_wc_msct_vac_sieve

Reconstruction Resolution – 2a

pointtarg_20deg_6gev_wc_msct_cer_sieve

xytar

yptar-yptari versus deltai yptar versus yptari 0.04 0.02 160 400 0.03 0.015 140 350 0.02 0.0 120 300 0.005 0.0 100 250 yptar-ypta 큠 0 80 200 -0.0-0.005150 60 -0.02-0.01 100 40 -0.03 -0.015 20 -0.04 -0.04 -0.02-0.03-0.02-0.010 0.01 0.02 0.03 0.04 -1020 yptari deltai Fitted value of par[2]=Sigma Fitted value of par[1]=Mean $\times 10^{-5}$ 0.001 0. 0.001 0.08 0.001 0.06 0.0012 0.04 0.00 0.0008 0.02 0.0006 n 0.0004 -0.02 0.0002 0<u>−</u>20 -20-100 10 20 30 -100 10 20 30

Reconstruction Resolution – 2b

pointtarg_20deg_6gev_wc_msct_vac_sieve

Focal Plane Patterns

pointtarg_20deg_6gev_wc_msct_vac_sieve

- Study of the patterns in focal plane variables
- What can we expect?
- Can we use them for calibration?

Overview

Sieve Holes – xsieve

- Select sieve columns with cuts on hsxpfp-hsxfp
- Optional cut on delta

hsxfp vs hsxpfp cut on xsieve

• Not much difference if Cerenkov or vacuum

ysieve vs xsieve cut on xsieve

xsieve

8

鑁

10

15

Sieve Holes – ysieve

- Select sieve rows with cuts on hsypfp-hsyfp
- Optional cut on delta
- Not much difference if Cerenkov or vacuum

ysieve vs xsieve cut on ysieve

Quad Strength and Focal Plane Patterns

• Can we use focal plane patterns to calibrate strengths of quadrupole magnets?

- Calculated new transport matrices with COSY for different strengths of quads
- Ran mc_shmh_single with new matrices

Q1 Strength Variation – 1

- Q2, Q3 on nominal strength
- Q1 [*0.95, *1.00, *1.05] nominal strength

Q1 Strength Variation – 2

- Q2, Q3 on nominal strength
- Q1 [*0.95, *1.00, *1.05] nominal strength

Q2 Strength Variation – 1

- Q1, Q3 on nominal strength
- Q2 [*0.95, *1.00, *1.05] nominal strength

Q2 Strength Variation – 2

- Q1, Q3 on nominal strength
- Q2 [*0.95, *1.00, *1.05] nominal strength

Q3 Strength Variation – 1

- Q1, Q2 on nominal strength
- Q3 [*0.95, *1.00, *1.05] nominal strength

Q3 Strength Variation – 2

- Q1, Q2 on nominal strength
- Q3 [*0.95, *1.00, *1.05] nominal strength

Overview

- Patterns not very sensitive to Q1 and Q3
- High sensitivity to Q2
- Hard to disentangle effect of single quad from others
 - All have similar effects on the patterns
 - In first order increasing strength of Q2 is the same as lowering strength of Q1 and Q3
 - Focus in one defocus in other direction
- Try patterns with only single quad powered

Q1 Single Strength Variation – 1

- Q2, Q3 turned off
- Q1 [*0.95, *1.00, *1.05] nominal strength

Q1 Single Strength Variation – 2

- Q2, Q3 turned off
- Q1 [*0.95, *1.00, *1.05] nominal strength

Q2 Single Strength Variation – 1

- Q1, Q3 turned off
- Q2 [*0.95, *1.00, *1.05] nominal strength

Q2 Single Strength Variation – 2

- Q1, Q3 turned off
- Q2 [*0.95, *1.00, *1.05] nominal strength

Q3 Single Strength Variation

- Q1, Q2 turned off
- Q3 [*0.95, *1.00, *1.05] nominal strength
- 0 < delta < 15

