LAD track multiplicity simulation

Tyler Kutz February 6, 2020

Sources of background

Random tracks

- Correlated hits GEMs/LAD
- Points back at target

Random GEM hits

• Uncorrelated between GEM layers

Estimating background

Constant rate Random hits Constant rate Random tracks Kinematic dependent Desired * events Time Need to account for all background occurring around event trigger

Estimate number of *random tracks*

- Expect LAD/GEM proton rate of approximately 20 MHz (estimate from proposal for 1.2 x 10³⁷ cm⁻² s⁻¹ luminosity)
- GEM time resolution is 15 ns (assume 30 ns)

20 MHz \times 30 ns = 0.6 random tracks

Round up to 1 random track/event

Estimate number of *random hits*

GMn numbers:

- GEMs 1.5 m from target at 40°
- Luminosity 1.2×10^{38} cm⁻² s⁻¹
- GEM random hit rate of 100 kHz cm⁻²

For LAD...

- Scale rate down x10 for luminosity (1.2 x 10^{37} cm⁻² s⁻¹)
- Scale rate up x4 for shorter distance to target (0.7 m)
- Scale rate down x2 for large backward angle (127°)
- Average GEM area approximately 0.6 m²

 $(20 \text{ kHz/cm}^2) \times (0.6 \text{ m}^2) \times (30 \text{ ns}) = 3.6 \text{ random hits}$

Round up to 5 random hits/event

Track multiplicity for a single event

For each *desired event*, add...

- Poisson($\lambda = 1$) random tracks
- Poisson($\lambda = 5$) random hits in each GEM plane

Form tracks from *all* pairs of GEM hits

y-dimension (vertical) not pictured, but is included in simulation

Simulation

- Hall C deuterium DIS generator from proposal (W. Cosyn)
- GEM planes are at 70 cm and 90 cm from the target, perpendicular to 127°
- Generate 20e6 events
- Additional events generated for random tracks
- Assume that resolutions are included in background suppression cuts (events are not smeared)

Kinematic cuts

Use the *true* scattering kinematics to calculate Q^2 , W^2 , and x'.

For *all* events, require:

 $Q^2 > 2 \text{ GeV}^2$ $W^2 > 4 \text{ GeV}^2$

Additionally, require:

0.25 < x' < 0.35For low-x' kinematics 0.45 < x' < 0.6For high-x' kinematics

Cuts to suppress background

For each event, we have:

- True target vertex position z_{vertex} , known from [S]HMS
- Hit positions at LAD

For every possible track...

• ...project to LAD

• ... project to target (get z_{track} , $r_{track} = min\left(\sqrt{x_{track}^2 + y_{track}^2}\right)$)

Cuts to suppress background

Reject tracks that don't meet cuts:

•
$$|\Delta z_{targ}| = |z_{track} - z_{vertex}| < 1 \text{ cm}$$

- $r_{track} < 1 \text{ cm}$
- Projection to LAD intersects same plane and bar as LAD hit

•
$$|\Delta y_{LAD}| = |y_{track} - y_{LAD}| < 10 \text{ cm}$$

Many tracks can be formed with all GEM hits...

Low x' track multiplicity (total)

...but these are suppressed with GEM tracking cuts.

Low x' results

High x' results

Summary

- Conservative estimates on background rates give 1 random track and 5 random GEM hits per event
- Simulation shows that background at these rates is suppressed to the 10% level with GEM tracking cuts
- With constant background rate, relative background is independent of event rate → similar background for low and high x'

Backup

Estimating background

Constant background rate → relative background the same at high- and low-event-rate kinematics (i.e., low and high x')

Forming 2D GEM hit

- Two layers of orthogonal readout strips to obtain x, y positions
- Strong correlation in cluster charge deposited in each readout layer
- This can be used to resolve ambiguity from multi-track events

Treat all GEM hits as fully-defined 2D points