b_1 technical note 2013-01 March 2013

Rates and Error calculations for measurement of A_{zz}

O. Rondon (INPP-UVA) and P. Solvignon (Jefferson Lab) (to be continued by Ellie)

Abstract

The tensor asymmetry A_{zz} can be extracted from:

$$\sigma = \sigma_u \bigg[1 - P_z P_B A_{\parallel} + P_{zz} A_{zz} \bigg] \tag{1}$$

For unpolarized beam,

$$\sigma = \sigma_u \bigg[1 + P_{zz} A_{zz} \bigg] \tag{2}$$

Rates 1

1.1General expressions

The total rates for ND3 are:

$$R_T = \mathcal{A} \left[L_{He} \sigma_{He} + L_N \sigma_N + L_D \sigma_D \right]$$
(3)

$$= \mathcal{A}\left[L_{He}\sigma_{He}^{u} + L_{N}\sigma_{N}^{u} + L_{D}\sigma_{D}^{u}\left(1 + \frac{1}{2}N_{D}P_{zz}A_{zz}\right)\right]$$
(4)

with \mathcal{A} is defined as the acceptance $(\Delta\Omega\Delta E')$. The quantity N_D is the D-state contribution to the deuterium ground state wave function (only the D-state can contribute to b1). The luminosity L_A is defined as follows:

$$L_A = N_e * N_A \tag{5}$$

with $N_A = \mathcal{N} \frac{\rho_A}{M_A} z_A$ and $N_e = I_{beam}/e$. Also \mathcal{N} is the Avogadro's number. The quantities ρ_A , M_A and z_A are the density, the atomic or molecular mass and the thickness of the nuclear species A. Therefore we have:

$$N_{\text{He}} = \mathcal{N} \frac{\rho_{\text{He}}}{M_{\text{He}}} z \ (1 - p_f) = \mathcal{N} \ \mathcal{D}_{\text{He}} \ z \ (1 - p_f) \tag{6}$$

$$N_{\rm ND_3} = \mathcal{N} \frac{\rho_{\rm ND_3}}{M_{\rm ND_3}} z \ p_f = \mathcal{N} \ \mathcal{D}_{\rm ND_3} \ z \ p_f \tag{7}$$

$$N_{\rm N} = \mathcal{N} \frac{\rho_{\rm ND_3}}{M_{\rm ND_3}} z \ p_f = \mathcal{N} \ \mathcal{D}_{\rm ND_3} \ z \ p_f \tag{8}$$

$$N_{\rm D} = 3 \mathcal{N} \frac{\rho_{\rm ND_3}}{M_{\rm ND_3}} z \ p_f = 3 \mathcal{N} \mathcal{D}_{\rm ND_3} \ z \ p_f \tag{9}$$

where $\mathcal{D}_{\mathcal{A}} = \rho_{\rm A}/M_{\rm A}$. The factor 3 in the expression of $l_{\rm D}$ take into account that there are three deuterium atoms in the ammonia molecule. The total

rate can be finally expressed as follows:

$$R_T = \mathcal{A} \ N_e \ \mathcal{N} \ z \ \left[\mathcal{D}_{He}(1-p_f)\sigma^u_{He} + \mathcal{D}_{ND3} \ p_f\left(\sigma^u_N + 3\sigma^u_D(1+\frac{1}{2}N_DP_{zz}A_{zz})\right) \right] (11)$$

with $R_T = R_U + R_D$. The rate coming from other nuclear species than deuterium is written as:

$$R_U = \mathcal{A} N_e \mathcal{N} z \left(\mathcal{D}_{He} (1 - p_f) \sigma^u_{He} + \mathcal{D}_{ND3} p_f \sigma^u_N \right).$$
(12)

and the deuterium rate can then be extracted:

$$R_D = \mathcal{A} N_e \mathcal{N} z \mathcal{D}_{ND3} p_f 3\sigma_D^u \left(1 + \frac{1}{2}N_D P_{zz} A_{zz}\right)$$
(13)

1.2 Expression of the measured asymmetry

From Refs. [1] and [2], the enhancement of the tensor polarization with solid polarized targets can be done via the "hole burning" method by pushing down either one of the $|m_z| = 1$ states moving its population to $m_z = 0$. But this necessarily enhances the absolute vector polarization, $|m_+-m_-|$ because one of the m_1 's stays fixed. So, as it is said in Ref. [1], the improvement in P_{zz} comes only from better P_z . The asymmetry would come from counting events with m_+ , m_- and m_0 for opposite P_z 's*:

$$P_z^+ = m_+ - m_- \quad \text{with } m_+ > m_-$$
 (14)

$$-P_z^- = m_+ - m_- \quad \text{with } m_+ < m_- \tag{15}$$

and for the P_{zz} 's:

$$P_{zz}^{+} = P_{zz}(P_{z}^{+}) = m_{+} + m_{-} - 2m_{0}^{+} = 2m_{+} - P_{z}^{+} - 2m_{0}^{+}$$
(16)

$$P_{zz}^{-} = P_{zz}(P_{z}^{-}) = m_{+} + m_{-} - 2m_{0}^{-} = 2m_{-} - P_{z}^{-} - 2m_{0}^{-}$$
(17)

Note that m_0 populations won't necessarily be the same.

$$R_T^+ - R_T^- = (R_U^+ + R_D^+) - (R_U^- + R_D^-)$$
(18)

$$= \mathcal{A} N_e \mathcal{N} z \mathcal{D}_{ND3} p_f 3\sigma_D^u \frac{1}{2} N_D A_{zz} (P_{zz}^+ - (-P_{zz}^-))$$
(19)

with

$$P_{zz}^{+} + P_{zz}^{-} = (2m_{+} - P_{z}^{+} - 2m_{0}^{+}) + (2m_{-} - P_{z}^{-} - 2m_{0}^{-})$$
(20)

$$= 2(m_{+} + m_{-}) - 2(m_{0}^{+} + m_{0}^{-}) - (P_{z}^{-} + P_{z}^{+})$$
(21)

 $*m_+, m_-$ and m_0 represent the normalized populations.

In order to access A_{zz} , we will have to take data with $P_{zz} < 0$ and $P_{zz} > 0$. Simplifications could be done assuming we are using the same target cup and the same integrated luminosity is seen for each polarization stage. Also if $-P_z^- \sim P_z^+$ and $m_0^+ \sim m_0^- = m_0$, we get:

$$P_{zz}^{+} + P_{zz}^{-} = 2(m_{+} + m_{-} - 2m_{0}) = 2P_{zz}$$
⁽²²⁾

and

$$R_D^+ - R_D^- = \mathcal{A} \ N_e \ \mathcal{N} \ z \ \mathcal{D}_{ND3} \ p_f \ 3\sigma_D^u \frac{1}{2} N_D A_{zz} P_{zz}$$
(23)

$$R_D^+ - R_D^- = \mathcal{A} N_e \mathcal{N} z \mathcal{D}_{ND3} p_f \ 3 \sigma_D^u \frac{1}{2} N_D A_{zz} P_{zz}$$
(24)

$$R_D^+ + R_D^- = 2\mathcal{A} N_e \mathcal{N} z \mathcal{D}_{ND3} p_f 3 \sigma_D^u$$
(25)

$$A_{meas} = f \frac{R_D^+ - R_D^-}{R_D^+ + R_D^-}$$
(26)

$$= \frac{1}{4} f N_D P_{zz} A_{zz}$$
 (27)

Table 1:	Values	used	in	the	rate	estimate	s

· varues us		501111
$\rho_{\rm ND_3}$	1.007 g.cm^{-3}	
$M_{\rm ND_3}$	20 g.mol^{-1}	
$p_f(ND_3)$	0.80	
$f(ND_3)$	6/20	
z	$3~{ m cm}$	
P_{zz}	0.25	
N_D	0.05	

2 statistical error

$$A_{zz} = \frac{4}{f N_D P_{zz}} A_{meas} \tag{28}$$

$$\delta A_{zz} = \frac{4}{f N_D P_{zz}} \delta A_{meas} \tag{29}$$

With $N_{+(-)} = R_D^{+(-)} * T_{+(-)}$, T being the time in second,

$$\delta A_{zz} = \frac{4}{f N_D P_{zz}} \frac{2}{(N_+ + N_-)^2} \sqrt{N_+ N_- (N_+ + N_-)}$$
(30)

Because A_{zz} is very small, we can assume $N_+ \simeq N_- \simeq N/2$ and therefore the statistical error on A_{zz} becomes:

$$\delta A_{zz} = \frac{4}{f \ N_D \ P_{zz}} \frac{1}{\sqrt{N}} \tag{31}$$

Time needed to make the measurement:

$$T = \left(\frac{4}{f N_D P_{zz} \delta A_{zz}}\right)^2 \frac{1}{R_D}$$
(32)

(33)

I believe that N_D shouldn't appear (Patricia).

3 kinematics choice

x	Q^2	W	E_P	$ heta_0$	$ heta_q$
0.15	2.011	3.504	3.856	12.50	6.580
0.25	2.020	2.634	6.695	9.50	14.105
0.35	3.381	2.676	5.852	13.16	14.107
0.45	2.754	2.061	7.738	10.32	22.261
0.55	3.811	2.000	7.308	12.50	22.253

Table 2: default

4 systematics

References

- [1] T.W. Meyer and E.P. Schilling, Tensor polarized deuteron targets for intermediate energy physics experiments, BONN-HE-85-06 (1985)
- [2] S. Bueltmann, D. Crabb, Y. Prok. UVa Target Studies, UVa Polarized Target Lab technical note, 1999.