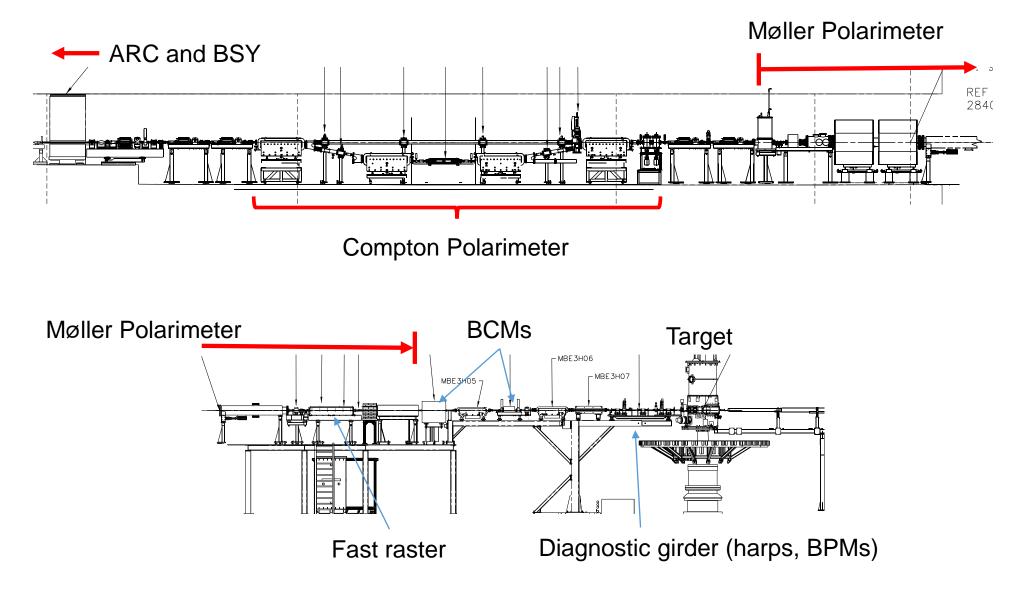
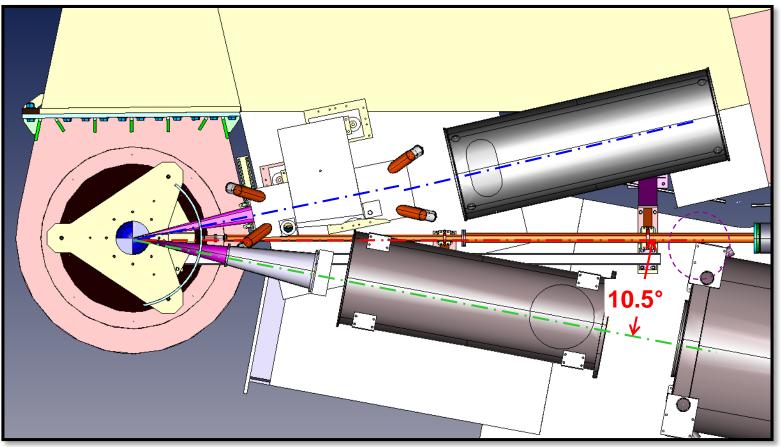
Experimental Readiness Review for E12-06-105/E12-10-008


Nadia Fomin June 8th, 2017

Charge elements to be addressed

- 1 beamline configuration
- 2b target ladder, EHS&Q
- 3 manpower and responsibilities
- 4 beam commissioning procedures and machine protection system
- 5 Radiation

Hall C Beamline - Layout

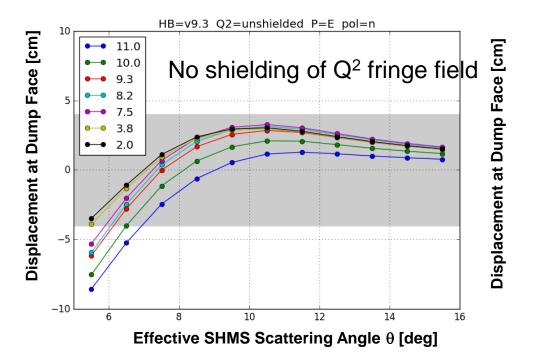


Upstream Beamline for EMC/x>1

(charge element 1)

- EMC/x>1 uses only unpolarized beam, Compton and Møller polarimeters not required
 - Møller quads used as part of nominal beamline optics
- All magnets required for beam delivery have been used and checked out as part of KPP run
- Key diagnostics required
 - BCMs (current normalization)
 - BPMs
 - Superharps (BPM calibration and beam energy measurement)
- All diagnostics are already functional and operation/precision will be thoroughly verified as part of Fall 2017 run
- No new beamline components or procedures are required standard Hall C 12 GeV beamline will be used
- Ownership: Upstream Beamline owned/controlled by Ops and Engineering
 - Detailed responsibilities for beamline elements are enumerated in a document maintained by /Physics/Ops/Engineering: https://hallcweb.jlab.org/experiments/ERR/Beamline_Responsibilities-3.xlsx

Downstream Beampipe



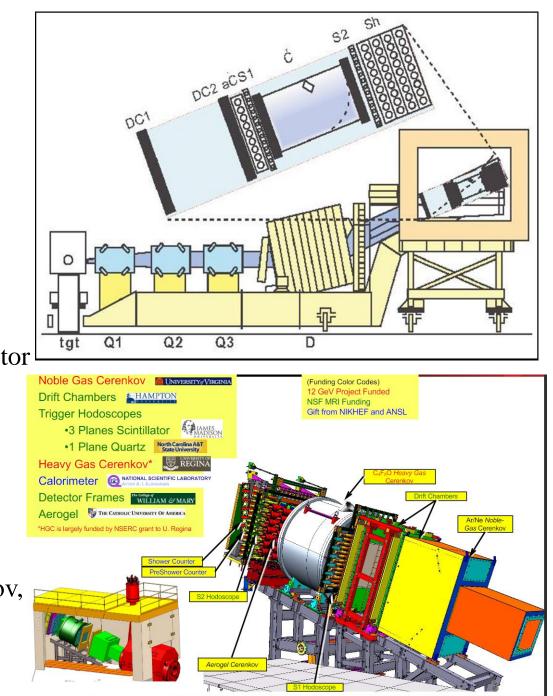
- x>1 requires minimum SHMS angle of 8 degrees
- Will use "medium" beam pipe which allows HMS angle down to 10.5 degrees and SHMS angle down to ~7.5 degrees (checked May 23, 2017)
- Downstream beampipe (up to beamdump entrance) owned by Hall C

SHMS Beam steering

No problems expected due to SHMS beam steering

- → Minimum angle of 8 degrees, expected deflection at beam dump will be less than +/- 4 cm (modeled)
- → Dump steering model will be verified as part of Fall 2017 commissioning
- → Effect for EMC/x>1 settings will be directly checked downstream of target as part of beam setup procedure

Beam commissioning procedures/responsibilities (charge items #3 and #4)


- Operation will setup beam using standard hall beam delivery procedure (<u>http://opsntsrv.acc.jlab.org/ops_docs/online_document_files/MCC_online_files/HallC_beam_delivery_proc.pdf</u>)
- Physics (Hall C) will:
 - Check raster functionality
 - Check BCM functionality
 - calibrate BPMs with superharps
 - Machine protection system
 - standard beam loss monitors and ion chambers (in the dump tunnel, along the beamline) as in 2017 experiments

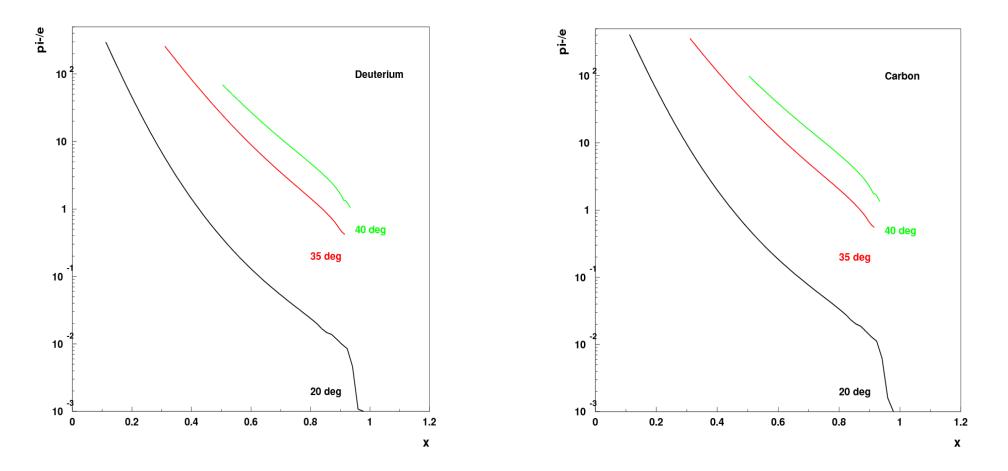
Detectors

- Standard Hall C spectrometers to be used
- HMS configuration
 - Tracking: 2 drift chambers (6 planes each)
 - Trigger/TOF: 4 plastic scintillator places
 - Particle ID: Gas Čerenkov and lead glass calorimeter
 - Aerogel Čerenkov NOT necessary (slides out of detector stack easily)

• SHMS configuration

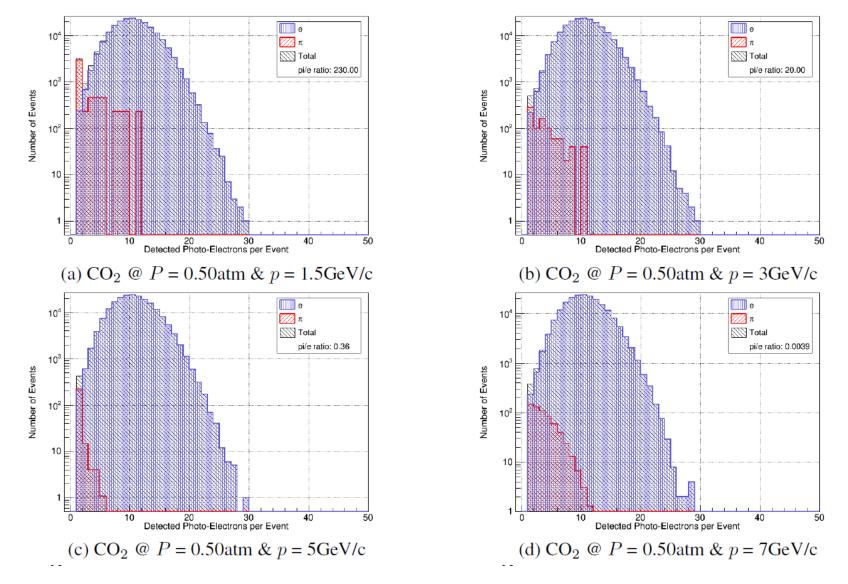
- Tracking: 12 drift chamber planes
- Trigger/TOF: 3 segmented scintillator planes + 1segmented Quartz plane
- Particle ID: Noble Gas Čerenkov, Heavy Gas Čerenkov, and lead glass calorimeter
- Aerogel Čerenkov NOT necessary

Configuration of Čerenkov detectors

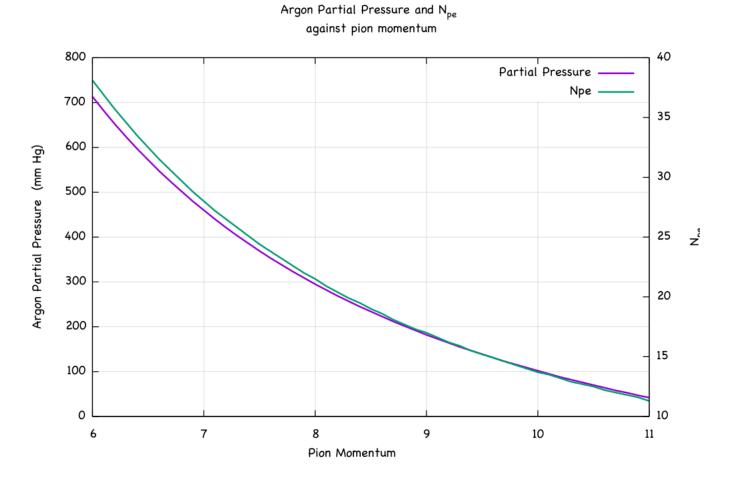

• SHMS

- Require robust pion rejection over a large momentum range (1.4GeV/c – 11 GeV/c)
- Use both Čerenkov detectors
- 0.5 atm of CO₂ in the heavy gas Čerenkov (pion rejection for lowmedium momentum range)
- Neon in Noble Gas Čerenkov provides pion rejection 6-11 GeV/c

• HMS


- Highest momentum setting of 4.6 GeV/c
- 0.5 atm of C_4F_{10} gas.
- 6GeV data analysis shows sufficient pion rejection when combined with calorimeter cut

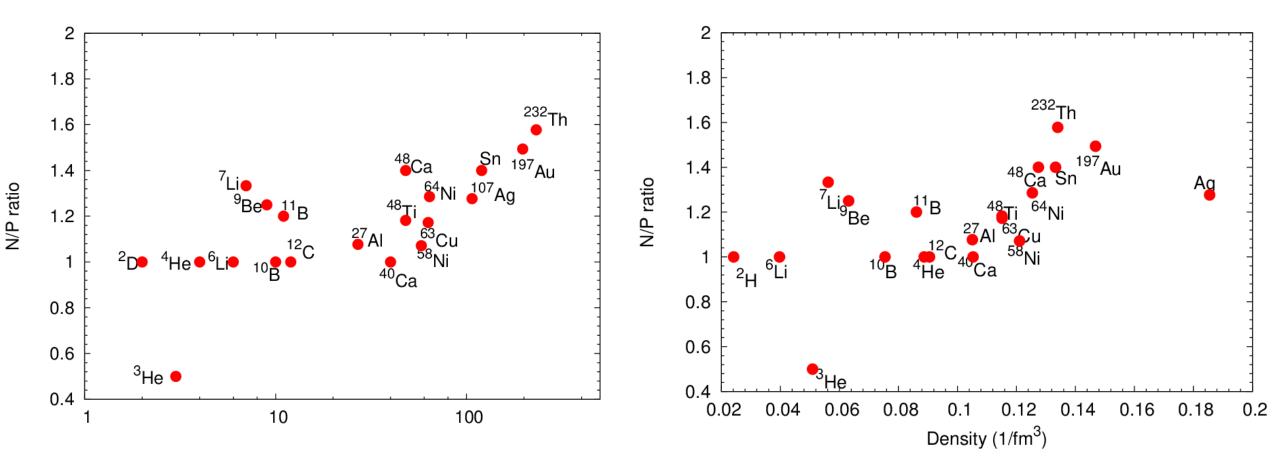
EMC: pi/e ratio


• Lowest momentum settings require pion rejection upto 300:1

SHMS Heavy Gas Čerenkov pion rejection

Aug 2016 report by G. Huber

SHMS Noble Gas Čerenkov – neon gas



To reject pions upto 11 GeV/c, a mixture of primarily Neon is required

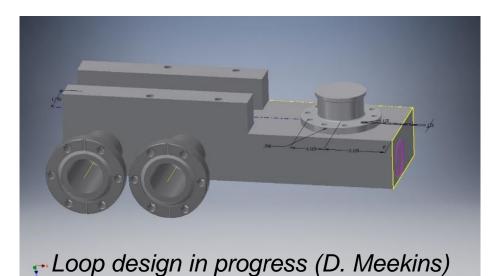
Experiment Commissioning Procedures

- Repeat checkout procedure used for F2p/F2d
- New calibration needed for Čerenkov due to altered pressure
- Possible update of TOF and Calorimeter calibrations
- Hydrogen elastic running

Target Choice motivated by physics impact



Scans across n/p, A, large range of masses and densities


Targets – Charge item 2b

- 21 physics targets
 - 4 cryogenic targets of "stretched tuna can" design
 - H, ²H, ³He, ⁴He
 - ⁴⁸Ca requires housing for oxidation protection
 - Natural calcium eliminates the need for oxidation protection
 - Reduced foil size allows for 23 physics targets + 1 optics
 - Target group is coordinating with industrial hygiene to confirm proper handling of solid target materials
 - Cryogenic target system covered under Target Group procedure and pressure vessel code
 - Max currents to be finalized with heat transfer calculations by Dave Meekins (earlier estimates used in Runplan)

Targets – Charge item 2b

- 2 cryogenic loops
 - H,²H
 - ³He, ⁴He
- 3rd loop contains ⁴⁸Ca (natural calcium in place of ⁴⁰Ca)
- Dummy target
- Materials to be procured by Hall C/Physics (see D. Meekins' talk for details)

Radiation Budget

charge item #5

Hall:	С					RAL	DIAT	ION	BUDGET FORM page: 2 of 2
Exp. #	e-A group E12-08-105, E	rev: 12-10-008	0		run	dates:	2019		name of liaison: Dave Gaskell
s	etup number	18	19	20	21	22	23		
beam	energy	GeV	11.0	11.0	11.0	11.0	11.0	11.0	totals:
	current	uA(CW)	60.0	60.0	35.0	60.0	60.0	40.0	
exp't	element		Cu	Ag	Sn	Au	Th	Al	
target	thickness	mg/cm2	772	538	529	388	364	1100	
	dist. to pivot		0.0	0.0	0.0	0.0	0.0	0.0	
	Z		29	47	50	79	90	13	
	A		64	60	70	200	142	27	
add'l	element								
target 1	thickness mg/cm2								
	dist. to pivot	m							
	Z		0	0	0	0	0	0	
	A		0	0	0	0	0	0	
cryo tgt	element								
window	thickness	mg/cm2							
	dist. to pivot	m							
	Z		0	0	0	0	0	0	
	A		0	0	0	0	0	0	
critical	radius	cm	3.9	3.9	3.9	3.9	3.9	3.9	
window	dist. to pivot	m	5.57	5.57	5.57	5.57	5.57	5.57	
scattering weighting factor			0.50	0.50	0.50	0.50	0.50	0.50	
time	run time	hours	151.2	5.04	8.88	23.52	8	76.8	1391.
	(100% eff.)	days	6.3	0.2	0.4	1.0	0.3	3.2	58.
	installation	hours							
	time	days	0.0	0.0	0.0	0.0	0.0	0.0	0.
lose rate at	method 1	urem/hr	5.45	6.96	3.86	3.91	5.82	3.96	
he fence post	method 2	urem/hr							
(run time)	conservative	urem/hr	5.45	6.96	3.86	3.91	5.82	3.96	
lose per setup		urem	824	35	34	92	47	304	406
% of annual do	8.2	0.4	0.3		0.5	3.0	40.6		
						% of a	llowed d	ose for t	he total time 255.6
					-	% of allo	wed dos	e for the	run time only 255.6
					-		cuss resu		ysics Research EH&S officer
	date f	orm issued:		May 23	3, 2017				uthors: P. Degtiarenko

17

Backups