Nathaly Santiesteban

- 1. Theory Summary: Summary after the meeting with Wim Cosyn and Jerry Miller
- 2. Image update

1. Summary based on:

Tensor-polarized structure function b_1 in the standard convolution description of the deuteron

W. Cosyn,¹ Yu-Bing Dong,^{2,3} S. Kumano,^{4,5} and M. Sargsian⁶

¹Department of Physics and Astronomy, Ghent University, Proeftuinstraat 86, B9000 Ghent, Belgium
 ²Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
 ³Theoretical Physics Center for Science Facilities (TPCSF), CAS, Beijing 100049, China
 ⁴KEK Theory Center, Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), 1-1, Ooho, Tsukuba, Ibaraki 305-0801, Japan
 ⁵J-PARC Branch, KEK Theory Center, Institute of Particle and Nuclear Studies, KEK, and Theory Group, Particle and Nuclear Physics Division, J-PARC Center, 203-1, Shirakata, Tokai, Ibaraki 319-1106, Japan
 ⁶Department of Physics, Florida International University, Miami, Florida 33199, USA (Received 17 February 2017; published 24 April 2017)

Tensor-polarized structure functions of a spin-1 hadron are additional observables, which do not exist for the spin-1/2 nucleon. They could probe novel aspects of the internal hadron structure. Twist-2 tensor-polarized structure functions are b_1 and b_2 , and they are related by the Callan-Gross-like relation in the Bjorken scaling limit. In this work, we theoretically calculate b_1 in the standard convolution description for the deuteron. Two different theoretical models, a basic convolution description and a virtual nucleon approximation, are used for calculating b_1 , and their results are compared with the HERMES measurement. We found large differences between our theoretical results and the data. Although there is still room to improve by considering higher-twist effects and in the experimental extraction of b_1 from the spin asymmetry A_{77} , there is a possibility that the large differences require physics beyond the standard deuteron model for their interpretation. Future b_1 studies could shed light on a new field of hadron physics. In particular, detailed experimental studies of b_1 will start soon at the Thomas Jefferson National Accelerator Facility. In addition, there are possibilities to investigate tensorpolarized parton distribution functions and b_1 at Fermi National Accelerator Laboratory and a future electron-ion collider. Therefore, further theoretical studies are needed for understanding the tensor structure of the spin-1 deuteron, including a new mechanism to explain the large differences between the current data and our theoretical results.

The inclusive cross section of a charged-lepton deep inelastic scattering from a spin-1 target is generally expressed as

$$\begin{split} \frac{d\sigma}{dxdQ^2} &= \frac{\pi y^2 \alpha^2}{Q^4(1-\epsilon)} \Big[F_{UU,T} + \epsilon F_{UU,L} \\ &+ T_{\parallel\parallel} (F_{UT_{LL},T} + \epsilon F_{UT_{LL},L}) \\ &+ T_{\parallel\perp} \cos \phi_{T_{\parallel}} \sqrt{2\epsilon(1+\epsilon)} F_{UT_{LT}}^{\cos \phi_{T_{\parallel}}} \\ &+ T_{\perp\perp} \cos(2\phi_{T_{\perp}}) \epsilon F_{UT_{TT}}^{\cos(2\phi_{T_{\perp}})} \Big], \end{split}$$

the polarization factors

 $T_{\parallel\parallel}, T_{\parallel\perp}$, and $T_{\perp\perp}$ are related to T_{ij} by the relations $T_{\parallel\parallel} = T_{zz}, T_{\parallel\perp} \cos \phi_{T_{\parallel}} = T_{xz}$, and $T_{\perp\perp} \cos(2\phi_{T_{\perp}}) = T_{xx} - T_{yy}$ by assigning the angles $\phi_{T_{\parallel}}$ and $\phi_{T_{\perp}}$.

$$\begin{split} F_{UT_{LL},L} &= \frac{1}{x_D} \sqrt{\frac{2}{3}} \bigg[2(1+\gamma^2) x_D b_1 - (1+\gamma^2)^2 \left(\frac{1}{3} b_2 + b_3 + b_4\right) \\ &- (1+\gamma^2) \left(\frac{1}{3} b_2 - b_4\right) - \left(\frac{1}{3} b_2 - b_3\right) \bigg], \\ F_{UT_{LL},T} &= -\frac{1}{x_D} \sqrt{\frac{2}{3}} \bigg[2(1+\gamma^2) x_D b_1 - \gamma^2 \left(\frac{1}{6} b_2 - \frac{1}{2} b_3\right) \bigg], \\ F_{UT_{LT}}^{\cos\phi_{T_{\parallel}}} &= -\sqrt{\frac{2}{3}} \frac{\gamma}{2x_D} \bigg[(1+\gamma^2) \left(\frac{1}{3} b_2 - b_4\right) + \left(\frac{2}{3} b_2 - 2 b_3\right) \bigg], \\ F_{UT_{TT}}^{\cos(2\phi_{T_{\perp}})} &= -\sqrt{\frac{2}{3}} \frac{\gamma^2}{x_D} \bigg(\frac{1}{6} b_2 - \frac{1}{2} b_3 \bigg). \end{split}$$

If the deuteron is polarized along the virtual photon direction, only $T_{\parallel\parallel}$ is nonzero and given by Eq. (26). If the deuteron is polarized along the lepton-

$$\widetilde{T}_{\parallel\parallel} = \frac{1}{\sqrt{6}}(1 - 3p^0)$$

The degrees of vector and tensor polarizations are given by $\mathcal{P} = \sqrt{\vec{\mathcal{P}}^2}$ and $T = \sqrt{\sum_{i,j} (T_{i,j})^2}$. If the probabilities of spin states +1, 0, and -1 are denoted as p^{+1} , p^0 , and p^{-1}

the projection. If the deuteron is polarized along the virtual photon direction, only $T_{\parallel\parallel\parallel}$

$$\begin{aligned} \frac{d\sigma}{dxdQ^2} &= \frac{\pi y^2 \alpha^2}{Q^4 (1-\epsilon)} \left[F_{UU,T} + \epsilon F_{UU,L} + T_{\parallel\parallel} (F_{UT_{LL},T} + \epsilon F_{UT_{LL},L}) \right] \\ &+ T_{\parallel\perp} \cos \phi_{T_{\parallel}} \sqrt{2\epsilon (1+\epsilon)} F_{UT_{LT}}^{\cos \phi_{T_{\parallel}}} \\ &+ T_{\perp\perp} \cos (2\phi_{T_{\perp}}) \epsilon F_{UT_{TT}}^{\cos(2\phi_{T_{\perp}})} \right], \end{aligned}$$

the polarization factors $T_{\parallel\parallel}$, $T_{\parallel\perp}$, and $T_{\perp\perp}$ are related to T_{ij} by the relations $T_{\parallel\parallel} = T_{zz}$, $T_{\parallel\perp} \cos \phi_{T_{\parallel}} = T_{xz}$, and $T_{\perp\perp} \cos(2\phi_{T_{\perp}}) = T_{xx} - T_{yy}$ by assigning the angles $\phi_{T_{\parallel}}$ and $\phi_{T_{\perp}}$.

$$\begin{split} F_{UT_{LL},L} &= \frac{1}{x_D} \sqrt{\frac{2}{3}} \bigg[2(1+\gamma^2) x_D b_1 - (1+\gamma^2)^2 \left(\frac{1}{3} b_2 + b_3 + b_4\right) \\ &- (1+\gamma^2) \left(\frac{1}{3} b_2 - b_4\right) - \left(\frac{1}{3} b_2 - b_3\right) \bigg], \\ F_{UT_{LL},T} &= -\frac{1}{x_D} \sqrt{\frac{2}{3}} \bigg[2(1+\gamma^2) x_D b_1 - \gamma^2 \left(\frac{1}{6} b_2 - \frac{1}{2} b_3\right) \bigg], \\ F_{UT_{LT}}^{\cos\phi_{T_{\parallel}}} &= -\sqrt{\frac{2}{32x_D}} \bigg[(1+\gamma^2) \left(\frac{1}{3} b_2 - b_4\right) + \left(\frac{2}{3} b_2 - 2b_3\right) \bigg], \\ F_{UT_{TT}}^{\cos(2\phi_{T_{\perp}})} &= -\sqrt{\frac{2}{3x_D}} \bigg[\left(\frac{1}{6} b_2 - \frac{1}{2} b_3\right). \end{split}$$

Eq. (26). If the deuteron is polarized along the leptonbeam axis, we have $\phi_{T_{\parallel}} = \phi_{T_{\perp}} = 0$, and the remaining polarization factors in Eq. (27) can be related to $\widetilde{T}_{\parallel\parallel}$ of Eq. (26) through the transformation properties of the density matrix under rotations as follows:

$$T_{\parallel\parallel} = \frac{1}{4} \left[1 + 3\cos(2\theta_q) \right] \widetilde{T}_{\parallel\parallel}, \quad T_{\parallel\perp} = \frac{3}{4} \sin(2\theta_q) \widetilde{T}_{\parallel\parallel},$$
$$T_{\perp\perp} = \frac{3}{4} \left[1 - \cos(2\theta_q) \right] \widetilde{T}_{\parallel\parallel},$$

Theory results:

TABLE I. Theory-2 calculations of the four tensor-polarized structure functions for kinematics of the HERMES b_1 data [20]

x	$Q^2 \; ({ m GeV}^2)$	$b_1(10^{-4})$	$b_2(10^{-5})$	$b_3(10^{-3})$	$b_4(10^{-3})$	$b_2/(2x_Db_1)$	γ
0.012	0.51	2.81	0.264	-1.34	5.06	0.783	0.0315
0.032	1.06	6.92	1.97	-1.87	7.51	0.890	0.0583
0.063	1.65	3.50	0.265	-2.02	7.96	0.120	0.0920
0.128	2.33	-1.80	-7.38	-2.13	7.49	3.20	0.157
0.248	3.11	-8.39	-28.1	-2.09	4.58	1.35	0.264
0.452	4.69	-6.18	-21.7	-1.11	-0.58	0.777	0.392

In the virtual nucleon approximation

In the HERMES analysis, b_1 was then extracted from A_{zz} using

$$A_{zz} = -\frac{2}{3} \frac{b_1}{F_1}.$$
 (48)

This equation is correct as an equality if the following two conditions are satisfied.

- (1) The deuteron is polarized along the photon direction, namely $\theta_q = 0$.
- (2) The Bjorken scaling limit $(Q^2 \to \infty, x \text{ finite}, \gamma \to 0)$ is taken. It implies the Callan-Gross relations for the structure functions $(2x_DF_1 = F_2, 2x_Db_1 = b_2)$ and neglect of the higher-twist structure functions $b_{3,4}$.

HERMES results:

TABLE II: Measured values (in 10^{-2} units) of the tensor asymmetry A_{zz}^{d} and the tensor structure function b_{1}^{d} . Both the corresponding statistical and systematic uncertainties are listed as well.

-	0	1			1			
$\langle x \rangle$	$\langle Q^2 \rangle$	$A_{zz}^{\mathrm{d}} \pm \delta \mathcal{A}_{zz}^{\mathrm{stat}} \pm \delta \mathcal{A}_{zz}^{\mathrm{sys}}$			$b_1^{\mathrm{d}} \pm \delta b_1^{\mathrm{stat}} \pm \delta b_1^{\mathrm{sys}}$			
	$[\text{GeV}^2]$	$[10^{-2}]$	$[10^{-2}]$	$[10^{-2}]$	$[10^{-2}]$	$[10^{-2}]$ [10^{-2}]	
0.012	0.51	-1.06	0.52	0.26	11.20	5.51	2.77	
0.032	1.06	-1.07	0.49	0.36	5.50	2.53	1.84	
0.063	1.65	-1.32	0.38	0.21	3.82	1.11	0.60	
0.128	2.33	-0.19	0.34	0.29	0.29	0.53	0.44	
0.248	3.11	-0.39	0.39	0.32	0.29	0.28	0.24	
0.452	4.69	1.57	0.68	0.13	-0.38	0.16	0.03	
-								

0.0015 Can we really neglect b3 and b4 for all the kinematics of Azz and b1?

Next:

* Wim will estimate the effects of b3,4 in his framework for both longitudinal and q-vector polarizations. Time estimate of the calculations: Last week of July

* From the paper we can estimate the effects using his calculations for HERMES data.

2. Image test

