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Tensor-polarized structure functions of a spin-1 hadron are additional observables, which do not exist
for the spin-1=2 nucleon. They could probe novel aspects of the internal hadron structure. Twist-2
tensor-polarized structure functions are b1 and b2, and they are related by the Callan-Gross-like relation
in the Bjorken scaling limit. In this work, we theoretically calculate b1 in the standard convolution
description for the deuteron. Two different theoretical models, a basic convolution description and a
virtual nucleon approximation, are used for calculating b1, and their results are compared with the
HERMES measurement. We found large differences between our theoretical results and the data.
Although there is still room to improve by considering higher-twist effects and in the experimental
extraction of b1 from the spin asymmetry Azz, there is a possibility that the large differences require
physics beyond the standard deuteron model for their interpretation. Future b1 studies could shed light
on a new field of hadron physics. In particular, detailed experimental studies of b1 will start soon at the
Thomas Jefferson National Accelerator Facility. In addition, there are possibilities to investigate tensor-
polarized parton distribution functions and b1 at Fermi National Accelerator Laboratory and a future
electron-ion collider. Therefore, further theoretical studies are needed for understanding the tensor
structure of the spin-1 deuteron, including a new mechanism to explain the large differences between the
current data and our theoretical results.

DOI: 10.1103/PhysRevD.95.074036

I. INTRODUCTION

Spin structure of the nucleon has been investigated
extensively, especially after the European Muon
Collaboration discovery on the small quark-spin contribu-
tion to the nucleon spin. Now, its studies are focused on
gluon-spin and orbital-angular-momentum effects. On the
other hand, a spin-1 hadron has a richer spin structure than
the spin-1=2 nucleon in the sense that there are four
additional structure functions in the charged-lepton inclu-
sive deep inelastic scattering (DIS) [1,2]. They are named
b1, b2, b3, and b4 [2], which are associated with the tensor
structure of the spin-1 hadron. The leading-twist structure
functions are b1 and b2, and they are related to each other
by the Callan-Gross-like relation 2xDb1 ¼ b2, where xD is
the scaling variable for the spin-1 hadron, in the Bjorken
scaling limit. These additional structure functions are
interesting quantities for probing different dynamical
aspects of the hadron structure, possibly of an exotic nature
as we suggest in this article, from the ones for the spin-1=2
nucleon.
Within the partonmodel, the structure function b1 satisfies

the sum
R
dxb1ðxÞ ¼ 0 [3], where x is the Bjorken scaling

variable, by considering only the valence-quark part for the
tensor structure. However, it does not mean b1ðxÞ ¼ 0 for
actual hadrons. In the fixed-target DIS, the simplest stable
spin-1 target is the deuteron. If the deuteronb1 is calculated in
the convolution model [2,4], it is, in fact, finite and shows an
oscillatory behavior as a function of x. Furthermore, shad-
owing mechanisms contribute significantly to b1 at small x
[5,6], and pions in the deuteron could also play a role [7].
There are related studies to the spin-1 hadron structure on a
polarized proton-deuteron Drell-Yan process [8–10], lepto-
productionof a spin-onehadron [11], fragmentation functions
[12], generalized parton distributions [13], target-mass cor-
rections [14], positivity constraints [15], lattice QCD esti-
mates [16], and angular momenta for the spin-1 hadron [17].
The spin-1 deuteron structure can be also investigated by
tagging the final state proton [18]. In addition, it is a unique
opportunity to investigate the gluon transversity distribution,
which exists only for hadrons with spin ≥ 1 [19].
The first measurement of b1 was reported by the

HERMES Collaboration in 2005 [20], and possible tensor-
polarized parton distribution functions (PDFs) were
extracted from the data [21]. The HERMES data are much
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The inclusive cross section of a charged-lepton deep inelastic scattering 
from a spin-1 target is generally expressed as 

[37], although such effects could exist theoretically, for
example, by the Fermi motion of nucleons [23]. In any
case, nuclear medium effects are considered to be small in
the deuteron, so that they are neglected in our numerical
estimates.
Using Eqs. (16), (21), and (22), we obtain numerical

results for this theoretical model as discussed in Sec. IV. We
should note that the leading-twist relation of Eq. (15) is
used for obtaining the convolution equation (16), so that its
numerical results are not precise at a small Q2. As for the
structure function FN

1 in the convolution integral, we used a
realistic one, which corresponds most closely to the one
obtained from experiments, in Eq. (22). This choice is also
intended for comparison with theory-2 results as mentioned
in the end of Sec. III B. Therefore, higher-twist effects are
contained in the nucleonic structure-function level, whereas
they are neglected in the convolution expression in the
theory-1 description. We need to be aware of it in looking at
numerical results in Sec. IV.

B. Theory 2: Virtual nucleon approximation

Next, we explain another convolution formalism by
using the virtual nucleon approximation. Before stepping
into the model, we introduce a general formalism for
polarization factors. The density matrix for a spin-1 hadron
is written by the spin-polarization vector ~P and rank-2 spin
tensor Tij as [38]

ρ ¼ 1

3

!
1þ 3

2
~P · ~Sþ

ffiffiffi
3

2

r
TijðSiSj þ SjSiÞ

#
; ð23Þ

where ~S is the 3 × 3matrix representing the spin operator ~̂S
for the spin-1 hadron. The polarization vector ~P and the
rank-2 spin tensor Tij are defined by

~P ¼ h~̂Si; Tij ¼
1

2

ffiffiffi
3

2

r $
hŜiŜj þ ŜjŜii −

4

3
δij

%
: ð24Þ

The degrees of vector and tensor polarizations are given by

P ¼
ffiffiffiffiffiffi
~P2

p
and T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i;jðTi;jÞ2

q
. If the probabilities of

spin states þ1, 0, and −1 are denoted as pþ1, p0, and p−1,
respectively, by taking the z0 axis as the quantization axis,
the vector and tensor polarizations are

Pz0 ¼ pþ − p−; Tz0z0 ¼
1ffiffiffi
6

p ð1 − 3p0Þ; ð25Þ

respectively. We denote this tensor polarization also as

~T∥∥ ¼
1ffiffiffi
6

p ð1 − 3p0Þ: ð26Þ

The inclusive cross section of a charged-lepton deep
inelastic scattering from a spin-1 target is generally
expressed as

dσ
dxdQ2

¼ πy2α2

Q4ð1 − ϵÞ

h
FUU;T þ ϵFUU;L

þ T∥∥ðFUTLL;T þ ϵFUTLL;LÞ

þ T∥⊥ cosϕT∥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϵð1þ ϵÞ

p
F
cosϕT∥
UTLT

þ T⊥⊥ cosð2ϕT⊥ÞϵF
cosð2ϕT⊥ Þ
UTTT

i
; ð27Þ

in terms of the spin-dependent factors and structure func-
tions [18]. Here, the z axis is taken along the virtual-photon
momentum direction (~q=j~qj). Then, the polarization factors
T∥∥, T∥⊥, and T⊥⊥ are related to Tij by the relations
T∥∥ ¼ Tzz, T∥⊥ cosϕT∥

¼ Txz, and T⊥⊥ cosð2ϕT⊥Þ ¼
Txx − Tyy by assigning the angles ϕT∥

and ϕT⊥ . Namely,
the tensor T is decomposed in three parts: a projection on the
longitudinal direction (T∥∥), a projection on the transverse
space (T⊥⊥), and a mixed projection (T∥⊥), where longi-
tudinal and transverse are relative to ~q. The angle ϕT∥

is the
azimuthal angle of the transverse part of the mixed projec-
tion, and the angle ϕT⊥ is the azimuthal angle in the
transverse space of the projection. If the deuteron is
polarized along the virtual photon direction, only T∥∥ is
nonzero and given by Eq. (26). If the deuteron is polarized
along the lepton-beam axis, we have ϕT∥

¼ ϕT⊥ ¼ 0, and
the remaining polarization factors in Eq. (27) can be related
to ~T∥∥ of Eq. (26) through the transformation properties of
the density matrix under rotations as follows:

T∥∥ ¼
1

4
½1þ 3 cosð2θqÞ& ~T∥∥; T∥⊥ ¼ 3

4
sinð2θqÞ ~T∥∥;

T⊥⊥ ¼ 3

4
½1 − cosð2θqÞ& ~T∥∥; ð28Þ

where θq is the angle between the lepton-beam (z0) and
virtual-photon (z) direction. The variables y and γ are
defined by the spin-1 hadron momentum P, its mass M,
the initial lepton momentum l, the momentum transfer q,
and Q2 as

y ¼ P · q
P · l

; γ ¼
ffiffiffiffiffiffi
Q2

p

ν
¼

ffiffiffiffiffiffiffiffiffiffiffi
1 − κ

p
: ð29Þ

The factor ϵ indicates the degree of the longitudinal
polarization of the virtual photon as it appears in front of
the longitudinal structure function FUU;L, and it is given by

ϵ ¼ 1

1þ ð1þ ν2=Q2Þtan2ðθ=2Þ
; ð30Þ

where θ is the scattering angle of the charged lepton. The six
structure functions in Eq. (27) can be written by the virtual
photon helicity amplitudes of the hadronic tensor inEq. (13).
Then, the tensor polarized structure functions, which are
used to calculate b1 below, are expressed by the photon
helicity amplitudes as
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FUTLL;L ¼ 4ffiffiffi
6

p ðAþ0;þ0 − A00;00Þ;

FUTLL;T ¼ 2ffiffiffi
6

p ðAþþ;þþ − 2Aþ0;þ0 þ Aþ−;þ−Þ;

F
cosϕT∥
UTLT

¼ −
4ffiffiffi
6

p ℜeðAþ0;0þ − Aþ−;00Þ;

F
cosð2ϕT⊥ Þ
UTTT

¼ −
ffiffiffi
2

3

r
ℜeAþ−;−þ: ð31Þ

Using the expression of Eq. (1) for the hadron tensor in
terms of the polarized structure functions b1−4 and the
helicity amplitude definition of Eq. (13), we obtain [18]

FUTLL;L¼
1

xD

ffiffiffi
2

3

r "
2ð1þγ2ÞxDb1−ð1þγ2Þ2

#
1

3
b2þb3þb4

$

−ð1þγ2Þ
#
1

3
b2−b4

$
−
#
1

3
b2−b3

$%
;

FUTLL;T¼−
1

xD

ffiffiffi
2

3

r "
2ð1þγ2ÞxDb1−γ2

#
1

6
b2−

1

2
b3

$%
;

F
cosϕT∥
UTLT

¼−
ffiffiffi
2

3

r
γ

2xD

"
ð1þγ2Þ

#
1

3
b2−b4

$
þ
#
2

3
b2−2b3

$%
;

F
cosð2ϕT⊥ Þ
UTTT

¼−
ffiffiffi
2

3

r
γ2

xD

#
1

6
b2−

1

2
b3

$
: ð32Þ

Therefore, the b1 is written through the structure functions
FUTLL;T and FUTTT

as

b1 ¼ −
1

1þ γ2

ffiffiffi
3

8

r
½FUTLL;T þ F

cosð2ϕT⊥ Þ
UTTT

&: ð33Þ

We also show the relation between these structure
functions and the EPW function bEPW1 , which is related by
the ratio of transverse structure functions, as

ffiffiffi
2

3

r
FUTLL;T

FUU;T
¼ Aþþ;þþ − 2Aþ0;þ0 þ Aþ−;þ−

Aþþ;þþ þ Aþ0;þ0 þ Aþ−;þ−

¼ −
2

3

bEPW1

F1

: ð34Þ

This equality is not valid with the HJM b1 because the
structure functions b2, b3 also contribute to FUTLL;T as
shown in Eq. (32).
Next, we explain how to calculate the structure functions

FUTLL;T and FUTTT
for the deuteron by the virtual nucleon

approximation (VNA), which considers the np component
of the light-front deuteron wave function. As shown in
Fig. 3, the virtual photon interacts with one nucleon which
is off the mass shell in the DIS reaction, while the second
noninteracting “spectator” is assumed to be on its mass

shell. Then, the inclusive structure functions in the impulse
approximation are obtained by integrating over all possible
spectator momenta ~pN .
In the following, we explain the outline for deriving the

tensor polarized structure functions in the light-front
formulation of the VNA. In Fig. 3, P, pi, and pN are
momenta for the deuteron (P ¼ pi þ pN), the struck
nucleon, and the on shell spectator, respectively. The
convolution approach for the symmetric part of the hadron
tensor is given in the VNA model for the deuteron as [18]

Wλ0λ
μν ðP; qÞ ¼ 4ð2πÞ3

Z
dΓN

αN
αi

WN
μνðpi; qÞρDðλ0; λÞ; ð35Þ

where WN
μν is the hadron tensor for the nucleon and dΓN is

the Lorentz invariant phase space for the spectator nucleon.
We note that only the symmetric term of Wλ0λ

μν under the
exchange μ ↔ ν is relevant for the tensor structure func-
tions b1−4. The factor 4ð2πÞ3 arises in defining the deuteron
light cone wave function, which is shown later in Eqs. (39)
and (41), and the factor αN=αi appears because the hadron
tensorWμν is for the nucleon with momentum pi instead of
the nucleon at rest [18]. Here,the light cone momentum
fractions are defined for the interacting (i) and spectator (N)
nucleons as

αi ¼
2p−

i

P− ; αN ¼ 2p−
N

P− ¼ 2 − αi: ð36Þ

Next, we define the relative momentum ~k of two nucleons
by [39]

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
k −M2

N

q
; E2

k ¼
m2

N þ ~k⊥2

αið2 − αiÞ
;

k3 ¼ ð1 − αiÞEk; ~k⊥ ¼ ~p⊥
i þ αi

2
~P⊥: ð37Þ

The momentum k corresponds with the relative momentum
of the free two nucleon state with identical light-front
momentum components (P−, P⊥) as the deuteron, and the

FIG. 3. Impulse approximation diagram in the VNA. For the
inclusive reaction, we integrate over the phase space of the
spectator nucleon.

TENSOR-POLARIZED STRUCTURE FUNCTION b1 IN … PHYSICAL REVIEW D 95, 074036 (2017)

074036-7



where !S is the 3×3 matrix representing the spin operator
!̂S for the spin-1 hadron. The polarization vector !P and
the rank-2 spin tensor Tij are defined by

!P = 〈 !̂S 〉, Tij =
1

2

√
3

2

(
〈 ŜiŜj + ŜjŜi 〉 −

4

3
δij

)
. (24)

The degrees of vector and tensor polarizations are given

by P =
√
!P2 and T =

√∑
i,j(Ti,j)2. If the probabilities

of spin states +1, 0, and −1 are denoted as p+1, p0, and
p−1, respectively, by taking the z′-axis as the quantiza-
tion axis, the vector and tensor polarizations are

Pz′ = p+ − p−, Tz′z′ =
1√
6
(1 − 3 p0). (25)

respectively. We denote this tensor polarization also as

T̃‖‖ =
1√
6
(1− 3p0). (26)

The inclusive cross section of a charged-lepton deep
inelastic scattering from a spin-1 target is generally ex-
pressed as

dσ

dx dQ2
=

πy2α2

Q4(1 − ε)

[
FUU,T + εFUU,L

+ T‖‖ (FUTLL,T + εFUTLL,L)

+ T‖⊥ cosφT‖

√
2ε(1 + ε)F

cosφT‖

UTLT

+ T⊥⊥ cos(2φT⊥) εF
cos(2φT⊥

)
UTTT

]
, (27)

in terms of the spin-dependent factors and structure func-
tions [18]. Here, the z-axis is taken along the virtual-
photon momentum direction (!q /|!q |). Then, the polar-
ization factors T‖‖, T‖⊥, and T⊥⊥ are related to Tij

by the relations T‖‖ = Tzz, T‖⊥ cosφT‖
= Txz, and

T⊥⊥ cos(2φT⊥) = Txx − Tyy by assigning the angles φT‖

and φT⊥ . Namely, the tensor T is decomposed in three
parts: a projection on the longitudinal direction (T‖‖),
a projection on the transverse space (T⊥⊥) and a mixed
projection (T‖⊥), where longitudinal and transverse are
relative to !q. The angle φT‖

is the azimuthal angle of
the transverse part of the mixed projection, and the an-
gle φT⊥ is the azimuthal angle in the transverse space of
the projection. If the deuteron is polarized along the vir-
tual photon direction, only T‖‖ is nonzero and given by
Eq. (26). If the deuteron is polarized along the lepton-
beam axis, we have φT‖

= φT⊥ = 0, and the remaining

polarization factors in Eq. (27) can be related to T̃‖‖ of
Eq. (26) through the transformation properties of the
density matrix under rotations as follows:

T‖‖ =
1

4
[1 + 3 cos(2θq)] T̃‖‖, T‖⊥ =

3

4
sin(2θq) T̃‖‖,

T⊥⊥ =
3

4
[1− cos(2θq)] T̃‖‖, (28)

where θq is the angle between the lepton-beam (z′) and
virtual-photon (z) direction. The variables y and γ are
defined by the spin-1 hadron momentum P , its mass M ,
the initial lepton momentum *, the momentum transfer
q, and Q2 as

y =
P · q
P · *

, γ =

√
Q2

ν
=

√
1− κ (29)

The factor ε indicates the degree of the longitudinal po-
larization of the virtual photon as it appears in front of
the longitudinal structure function FUU,L, and it is given
by

ε =
1

1 + (1 + ν2/Q2) tan2(θ/2)
, (30)

where θ is the scattering angle of the charged lepton. The
six structure functions in Eq. (27) can be written by the
virtual photon helicity amplitudes of the hadronic tensor
in Eq. (13). Then, the tensor polarized structure func-
tions, which are used to calculate b1 below, are expressed
by the photon helicity amplitudes as

FUTLL,L =
4√
6
(A+0,+0 −A00,00) ,

FUTLL,T =
2√
6
(A++,++ − 2A+0,+0 +A+−,+−) ,

F
cosφT‖

UTLT
= −

4√
6
&e (A+0,0+ −A+−,00) ,

F
cos(2φT⊥

)
UTTT

= −
√

2

3
&eA+−,−+ . (31)

Using the expression of Eq. (1) for the hadron tensor in
terms of the polarized structure functions b1−4 and the
helicity amplitude definition of Eq. (13), we obtain [18]

FUTLL,L =
1

xD

√
2

3

[
2(1 + γ2)xDb1 − (1 + γ2)2

(
1

3
b2 + b3 + b4

)

−(1 + γ2)

(
1

3
b2 − b4

)
−
(
1

3
b2 − b3

)]
,

FUTLL,T = −
1

xD

√
2

3

[
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,
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+

(
2

3
b2 − 2b3
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,

F
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)
UTTT

= −
√
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1
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)
. (32)

Therefore, the b1 is written through the structure func-
tions FUTLL,T and FUTTT

as

b1 = −
1

1 + γ2

√
3

8

[
FUTLL,T + F

cos(2φT⊥
)

UTTT

]
. (33)

We also show the relation between these structure
functions and the EPW function bEPW

1 , which is related
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where !S is the 3×3 matrix representing the spin operator
!̂S for the spin-1 hadron. The polarization vector !P and
the rank-2 spin tensor Tij are defined by

!P = 〈 !̂S 〉, Tij =
1

2

√
3

2

(
〈 ŜiŜj + ŜjŜi 〉 −

4

3
δij

)
. (24)

The degrees of vector and tensor polarizations are given

by P =
√
!P2 and T =

√∑
i,j(Ti,j)2. If the probabilities

of spin states +1, 0, and −1 are denoted as p+1, p0, and
p−1, respectively, by taking the z′-axis as the quantiza-
tion axis, the vector and tensor polarizations are

Pz′ = p+ − p−, Tz′z′ =
1√
6
(1 − 3 p0). (25)

respectively. We denote this tensor polarization also as

T̃‖‖ =
1√
6
(1− 3p0). (26)

The inclusive cross section of a charged-lepton deep
inelastic scattering from a spin-1 target is generally ex-
pressed as

dσ

dx dQ2
=

πy2α2

Q4(1 − ε)

[
FUU,T + εFUU,L

+ T‖‖ (FUTLL,T + εFUTLL,L)

+ T‖⊥ cosφT‖

√
2ε(1 + ε)F

cosφT‖

UTLT

+ T⊥⊥ cos(2φT⊥) εF
cos(2φT⊥

)
UTTT

]
, (27)

in terms of the spin-dependent factors and structure func-
tions [18]. Here, the z-axis is taken along the virtual-
photon momentum direction (!q /|!q |). Then, the polar-
ization factors T‖‖, T‖⊥, and T⊥⊥ are related to Tij

by the relations T‖‖ = Tzz, T‖⊥ cosφT‖
= Txz, and

T⊥⊥ cos(2φT⊥) = Txx − Tyy by assigning the angles φT‖

and φT⊥ . Namely, the tensor T is decomposed in three
parts: a projection on the longitudinal direction (T‖‖),
a projection on the transverse space (T⊥⊥) and a mixed
projection (T‖⊥), where longitudinal and transverse are
relative to !q. The angle φT‖

is the azimuthal angle of
the transverse part of the mixed projection, and the an-
gle φT⊥ is the azimuthal angle in the transverse space of
the projection. If the deuteron is polarized along the vir-
tual photon direction, only T‖‖ is nonzero and given by
Eq. (26). If the deuteron is polarized along the lepton-
beam axis, we have φT‖

= φT⊥ = 0, and the remaining

polarization factors in Eq. (27) can be related to T̃‖‖ of
Eq. (26) through the transformation properties of the
density matrix under rotations as follows:

T‖‖ =
1

4
[1 + 3 cos(2θq)] T̃‖‖, T‖⊥ =

3

4
sin(2θq) T̃‖‖,

T⊥⊥ =
3

4
[1− cos(2θq)] T̃‖‖, (28)

where θq is the angle between the lepton-beam (z′) and
virtual-photon (z) direction. The variables y and γ are
defined by the spin-1 hadron momentum P , its mass M ,
the initial lepton momentum *, the momentum transfer
q, and Q2 as

y =
P · q
P · *

, γ =

√
Q2

ν
=

√
1− κ (29)

The factor ε indicates the degree of the longitudinal po-
larization of the virtual photon as it appears in front of
the longitudinal structure function FUU,L, and it is given
by

ε =
1

1 + (1 + ν2/Q2) tan2(θ/2)
, (30)

where θ is the scattering angle of the charged lepton. The
six structure functions in Eq. (27) can be written by the
virtual photon helicity amplitudes of the hadronic tensor
in Eq. (13). Then, the tensor polarized structure func-
tions, which are used to calculate b1 below, are expressed
by the photon helicity amplitudes as
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2

3
&eA+−,−+ . (31)

Using the expression of Eq. (1) for the hadron tensor in
terms of the polarized structure functions b1−4 and the
helicity amplitude definition of Eq. (13), we obtain [18]
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Therefore, the b1 is written through the structure func-
tions FUTLL,T and FUTTT

as

b1 = −
1

1 + γ2

√
3

8

[
FUTLL,T + F

cos(2φT⊥
)

UTTT

]
. (33)

We also show the relation between these structure
functions and the EPW function bEPW

1 , which is related

6
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The degrees of vector and tensor polarizations are given
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of spin states +1, 0, and −1 are denoted as p+1, p0, and
p−1, respectively, by taking the z′-axis as the quantiza-
tion axis, the vector and tensor polarizations are
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6
(1 − 3 p0). (25)

respectively. We denote this tensor polarization also as
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6
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The inclusive cross section of a charged-lepton deep
inelastic scattering from a spin-1 target is generally ex-
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in terms of the spin-dependent factors and structure func-
tions [18]. Here, the z-axis is taken along the virtual-
photon momentum direction (!q /|!q |). Then, the polar-
ization factors T‖‖, T‖⊥, and T⊥⊥ are related to Tij

by the relations T‖‖ = Tzz, T‖⊥ cosφT‖
= Txz, and

T⊥⊥ cos(2φT⊥) = Txx − Tyy by assigning the angles φT‖

and φT⊥ . Namely, the tensor T is decomposed in three
parts: a projection on the longitudinal direction (T‖‖),
a projection on the transverse space (T⊥⊥) and a mixed
projection (T‖⊥), where longitudinal and transverse are
relative to !q. The angle φT‖

is the azimuthal angle of
the transverse part of the mixed projection, and the an-
gle φT⊥ is the azimuthal angle in the transverse space of
the projection. If the deuteron is polarized along the vir-
tual photon direction, only T‖‖ is nonzero and given by
Eq. (26). If the deuteron is polarized along the lepton-
beam axis, we have φT‖

= φT⊥ = 0, and the remaining

polarization factors in Eq. (27) can be related to T̃‖‖ of
Eq. (26) through the transformation properties of the
density matrix under rotations as follows:

T‖‖ =
1

4
[1 + 3 cos(2θq)] T̃‖‖, T‖⊥ =

3

4
sin(2θq) T̃‖‖,

T⊥⊥ =
3

4
[1− cos(2θq)] T̃‖‖, (28)

where θq is the angle between the lepton-beam (z′) and
virtual-photon (z) direction. The variables y and γ are
defined by the spin-1 hadron momentum P , its mass M ,
the initial lepton momentum *, the momentum transfer
q, and Q2 as

y =
P · q
P · *

, γ =

√
Q2

ν
=

√
1− κ (29)

The factor ε indicates the degree of the longitudinal po-
larization of the virtual photon as it appears in front of
the longitudinal structure function FUU,L, and it is given
by

ε =
1

1 + (1 + ν2/Q2) tan2(θ/2)
, (30)

where θ is the scattering angle of the charged lepton. The
six structure functions in Eq. (27) can be written by the
virtual photon helicity amplitudes of the hadronic tensor
in Eq. (13). Then, the tensor polarized structure func-
tions, which are used to calculate b1 below, are expressed
by the photon helicity amplitudes as

FUTLL,L =
4√
6
(A+0,+0 −A00,00) ,

FUTLL,T =
2√
6
(A++,++ − 2A+0,+0 +A+−,+−) ,

F
cosφT‖

UTLT
= −

4√
6
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F
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)
UTTT
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3
&eA+−,−+ . (31)

Using the expression of Eq. (1) for the hadron tensor in
terms of the polarized structure functions b1−4 and the
helicity amplitude definition of Eq. (13), we obtain [18]
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Therefore, the b1 is written through the structure func-
tions FUTLL,T and FUTTT

as

b1 = −
1

1 + γ2

√
3

8

[
FUTLL,T + F

cos(2φT⊥
)

UTTT

]
. (33)

We also show the relation between these structure
functions and the EPW function bEPW

1 , which is related
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[37], although such effects could exist theoretically, for
example, by the Fermi motion of nucleons [23]. In any
case, nuclear medium effects are considered to be small in
the deuteron, so that they are neglected in our numerical
estimates.
Using Eqs. (16), (21), and (22), we obtain numerical

results for this theoretical model as discussed in Sec. IV. We
should note that the leading-twist relation of Eq. (15) is
used for obtaining the convolution equation (16), so that its
numerical results are not precise at a small Q2. As for the
structure function FN

1 in the convolution integral, we used a
realistic one, which corresponds most closely to the one
obtained from experiments, in Eq. (22). This choice is also
intended for comparison with theory-2 results as mentioned
in the end of Sec. III B. Therefore, higher-twist effects are
contained in the nucleonic structure-function level, whereas
they are neglected in the convolution expression in the
theory-1 description. We need to be aware of it in looking at
numerical results in Sec. IV.

B. Theory 2: Virtual nucleon approximation

Next, we explain another convolution formalism by
using the virtual nucleon approximation. Before stepping
into the model, we introduce a general formalism for
polarization factors. The density matrix for a spin-1 hadron
is written by the spin-polarization vector ~P and rank-2 spin
tensor Tij as [38]

ρ ¼ 1

3

!
1þ 3

2
~P · ~Sþ

ffiffiffi
3

2

r
TijðSiSj þ SjSiÞ

#
; ð23Þ

where ~S is the 3 × 3matrix representing the spin operator ~̂S
for the spin-1 hadron. The polarization vector ~P and the
rank-2 spin tensor Tij are defined by

~P ¼ h~̂Si; Tij ¼
1

2

ffiffiffi
3

2

r $
hŜiŜj þ ŜjŜii −

4

3
δij

%
: ð24Þ

The degrees of vector and tensor polarizations are given by

P ¼
ffiffiffiffiffiffi
~P2

p
and T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i;jðTi;jÞ2

q
. If the probabilities of

spin states þ1, 0, and −1 are denoted as pþ1, p0, and p−1,
respectively, by taking the z0 axis as the quantization axis,
the vector and tensor polarizations are

Pz0 ¼ pþ − p−; Tz0z0 ¼
1ffiffiffi
6

p ð1 − 3p0Þ; ð25Þ

respectively. We denote this tensor polarization also as

~T∥∥ ¼
1ffiffiffi
6

p ð1 − 3p0Þ: ð26Þ

The inclusive cross section of a charged-lepton deep
inelastic scattering from a spin-1 target is generally
expressed as

dσ
dxdQ2

¼ πy2α2

Q4ð1 − ϵÞ

h
FUU;T þ ϵFUU;L

þ T∥∥ðFUTLL;T þ ϵFUTLL;LÞ

þ T∥⊥ cosϕT∥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϵð1þ ϵÞ

p
F
cosϕT∥
UTLT

þ T⊥⊥ cosð2ϕT⊥ÞϵF
cosð2ϕT⊥ Þ
UTTT

i
; ð27Þ

in terms of the spin-dependent factors and structure func-
tions [18]. Here, the z axis is taken along the virtual-photon
momentum direction (~q=j~qj). Then, the polarization factors
T∥∥, T∥⊥, and T⊥⊥ are related to Tij by the relations
T∥∥ ¼ Tzz, T∥⊥ cosϕT∥

¼ Txz, and T⊥⊥ cosð2ϕT⊥Þ ¼
Txx − Tyy by assigning the angles ϕT∥

and ϕT⊥ . Namely,
the tensor T is decomposed in three parts: a projection on the
longitudinal direction (T∥∥), a projection on the transverse
space (T⊥⊥), and a mixed projection (T∥⊥), where longi-
tudinal and transverse are relative to ~q. The angle ϕT∥

is the
azimuthal angle of the transverse part of the mixed projec-
tion, and the angle ϕT⊥ is the azimuthal angle in the
transverse space of the projection. If the deuteron is
polarized along the virtual photon direction, only T∥∥ is
nonzero and given by Eq. (26). If the deuteron is polarized
along the lepton-beam axis, we have ϕT∥

¼ ϕT⊥ ¼ 0, and
the remaining polarization factors in Eq. (27) can be related
to ~T∥∥ of Eq. (26) through the transformation properties of
the density matrix under rotations as follows:

T∥∥ ¼
1

4
½1þ 3 cosð2θqÞ& ~T∥∥; T∥⊥ ¼ 3

4
sinð2θqÞ ~T∥∥;

T⊥⊥ ¼ 3

4
½1 − cosð2θqÞ& ~T∥∥; ð28Þ

where θq is the angle between the lepton-beam (z0) and
virtual-photon (z) direction. The variables y and γ are
defined by the spin-1 hadron momentum P, its mass M,
the initial lepton momentum l, the momentum transfer q,
and Q2 as

y ¼ P · q
P · l

; γ ¼
ffiffiffiffiffiffi
Q2

p

ν
¼

ffiffiffiffiffiffiffiffiffiffiffi
1 − κ

p
: ð29Þ

The factor ϵ indicates the degree of the longitudinal
polarization of the virtual photon as it appears in front of
the longitudinal structure function FUU;L, and it is given by

ϵ ¼ 1

1þ ð1þ ν2=Q2Þtan2ðθ=2Þ
; ð30Þ

where θ is the scattering angle of the charged lepton. The six
structure functions in Eq. (27) can be written by the virtual
photon helicity amplitudes of the hadronic tensor inEq. (13).
Then, the tensor polarized structure functions, which are
used to calculate b1 below, are expressed by the photon
helicity amplitudes as
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[37], although such effects could exist theoretically, for
example, by the Fermi motion of nucleons [23]. In any
case, nuclear medium effects are considered to be small in
the deuteron, so that they are neglected in our numerical
estimates.
Using Eqs. (16), (21), and (22), we obtain numerical

results for this theoretical model as discussed in Sec. IV. We
should note that the leading-twist relation of Eq. (15) is
used for obtaining the convolution equation (16), so that its
numerical results are not precise at a small Q2. As for the
structure function FN

1 in the convolution integral, we used a
realistic one, which corresponds most closely to the one
obtained from experiments, in Eq. (22). This choice is also
intended for comparison with theory-2 results as mentioned
in the end of Sec. III B. Therefore, higher-twist effects are
contained in the nucleonic structure-function level, whereas
they are neglected in the convolution expression in the
theory-1 description. We need to be aware of it in looking at
numerical results in Sec. IV.

B. Theory 2: Virtual nucleon approximation

Next, we explain another convolution formalism by
using the virtual nucleon approximation. Before stepping
into the model, we introduce a general formalism for
polarization factors. The density matrix for a spin-1 hadron
is written by the spin-polarization vector ~P and rank-2 spin
tensor Tij as [38]
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where ~S is the 3 × 3matrix representing the spin operator ~̂S
for the spin-1 hadron. The polarization vector ~P and the
rank-2 spin tensor Tij are defined by
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The degrees of vector and tensor polarizations are given by

P ¼
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and T ¼
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q
. If the probabilities of

spin states þ1, 0, and −1 are denoted as pþ1, p0, and p−1,
respectively, by taking the z0 axis as the quantization axis,
the vector and tensor polarizations are

Pz0 ¼ pþ − p−; Tz0z0 ¼
1ffiffiffi
6

p ð1 − 3p0Þ; ð25Þ

respectively. We denote this tensor polarization also as

~T∥∥ ¼
1ffiffiffi
6

p ð1 − 3p0Þ: ð26Þ

The inclusive cross section of a charged-lepton deep
inelastic scattering from a spin-1 target is generally
expressed as
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dxdQ2

¼ πy2α2

Q4ð1 − ϵÞ
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i
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in terms of the spin-dependent factors and structure func-
tions [18]. Here, the z axis is taken along the virtual-photon
momentum direction (~q=j~qj). Then, the polarization factors
T∥∥, T∥⊥, and T⊥⊥ are related to Tij by the relations
T∥∥ ¼ Tzz, T∥⊥ cosϕT∥

¼ Txz, and T⊥⊥ cosð2ϕT⊥Þ ¼
Txx − Tyy by assigning the angles ϕT∥

and ϕT⊥ . Namely,
the tensor T is decomposed in three parts: a projection on the
longitudinal direction (T∥∥), a projection on the transverse
space (T⊥⊥), and a mixed projection (T∥⊥), where longi-
tudinal and transverse are relative to ~q. The angle ϕT∥

is the
azimuthal angle of the transverse part of the mixed projec-
tion, and the angle ϕT⊥ is the azimuthal angle in the
transverse space of the projection. If the deuteron is
polarized along the virtual photon direction, only T∥∥ is
nonzero and given by Eq. (26). If the deuteron is polarized
along the lepton-beam axis, we have ϕT∥

¼ ϕT⊥ ¼ 0, and
the remaining polarization factors in Eq. (27) can be related
to ~T∥∥ of Eq. (26) through the transformation properties of
the density matrix under rotations as follows:

T∥∥ ¼
1

4
½1þ 3 cosð2θqÞ& ~T∥∥; T∥⊥ ¼ 3

4
sinð2θqÞ ~T∥∥;

T⊥⊥ ¼ 3

4
½1 − cosð2θqÞ& ~T∥∥; ð28Þ

where θq is the angle between the lepton-beam (z0) and
virtual-photon (z) direction. The variables y and γ are
defined by the spin-1 hadron momentum P, its mass M,
the initial lepton momentum l, the momentum transfer q,
and Q2 as

y ¼ P · q
P · l

; γ ¼
ffiffiffiffiffiffi
Q2

p

ν
¼

ffiffiffiffiffiffiffiffiffiffiffi
1 − κ

p
: ð29Þ

The factor ϵ indicates the degree of the longitudinal
polarization of the virtual photon as it appears in front of
the longitudinal structure function FUU;L, and it is given by

ϵ ¼ 1

1þ ð1þ ν2=Q2Þtan2ðθ=2Þ
; ð30Þ

where θ is the scattering angle of the charged lepton. The six
structure functions in Eq. (27) can be written by the virtual
photon helicity amplitudes of the hadronic tensor inEq. (13).
Then, the tensor polarized structure functions, which are
used to calculate b1 below, are expressed by the photon
helicity amplitudes as
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FUTLL;L ¼ 4ffiffiffi
6

p ðAþ0;þ0 − A00;00Þ;

FUTLL;T ¼ 2ffiffiffi
6

p ðAþþ;þþ − 2Aþ0;þ0 þ Aþ−;þ−Þ;

F
cosϕT∥
UTLT

¼ −
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F
cosð2ϕT⊥ Þ
UTTT

¼ −
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2

3

r
ℜeAþ−;−þ: ð31Þ

Using the expression of Eq. (1) for the hadron tensor in
terms of the polarized structure functions b1−4 and the
helicity amplitude definition of Eq. (13), we obtain [18]
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"
ð1þγ2Þ

#
1

3
b2−b4

$
þ
#
2

3
b2−2b3

$%
;

F
cosð2ϕT⊥ Þ
UTTT

¼−
ffiffiffi
2

3

r
γ2

xD

#
1

6
b2−

1

2
b3

$
: ð32Þ

Therefore, the b1 is written through the structure functions
FUTLL;T and FUTTT

as

b1 ¼ −
1

1þ γ2

ffiffiffi
3

8

r
½FUTLL;T þ F

cosð2ϕT⊥ Þ
UTTT

&: ð33Þ

We also show the relation between these structure
functions and the EPW function bEPW1 , which is related by
the ratio of transverse structure functions, as

ffiffiffi
2

3

r
FUTLL;T

FUU;T
¼ Aþþ;þþ − 2Aþ0;þ0 þ Aþ−;þ−

Aþþ;þþ þ Aþ0;þ0 þ Aþ−;þ−

¼ −
2

3

bEPW1

F1

: ð34Þ

This equality is not valid with the HJM b1 because the
structure functions b2, b3 also contribute to FUTLL;T as
shown in Eq. (32).
Next, we explain how to calculate the structure functions

FUTLL;T and FUTTT
for the deuteron by the virtual nucleon

approximation (VNA), which considers the np component
of the light-front deuteron wave function. As shown in
Fig. 3, the virtual photon interacts with one nucleon which
is off the mass shell in the DIS reaction, while the second
noninteracting “spectator” is assumed to be on its mass

shell. Then, the inclusive structure functions in the impulse
approximation are obtained by integrating over all possible
spectator momenta ~pN .
In the following, we explain the outline for deriving the

tensor polarized structure functions in the light-front
formulation of the VNA. In Fig. 3, P, pi, and pN are
momenta for the deuteron (P ¼ pi þ pN), the struck
nucleon, and the on shell spectator, respectively. The
convolution approach for the symmetric part of the hadron
tensor is given in the VNA model for the deuteron as [18]

Wλ0λ
μν ðP; qÞ ¼ 4ð2πÞ3

Z
dΓN

αN
αi

WN
μνðpi; qÞρDðλ0; λÞ; ð35Þ

where WN
μν is the hadron tensor for the nucleon and dΓN is

the Lorentz invariant phase space for the spectator nucleon.
We note that only the symmetric term of Wλ0λ

μν under the
exchange μ ↔ ν is relevant for the tensor structure func-
tions b1−4. The factor 4ð2πÞ3 arises in defining the deuteron
light cone wave function, which is shown later in Eqs. (39)
and (41), and the factor αN=αi appears because the hadron
tensorWμν is for the nucleon with momentum pi instead of
the nucleon at rest [18]. Here,the light cone momentum
fractions are defined for the interacting (i) and spectator (N)
nucleons as

αi ¼
2p−

i

P− ; αN ¼ 2p−
N

P− ¼ 2 − αi: ð36Þ

Next, we define the relative momentum ~k of two nucleons
by [39]

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
k −M2

N

q
; E2

k ¼
m2

N þ ~k⊥2

αið2 − αiÞ
;

k3 ¼ ð1 − αiÞEk; ~k⊥ ¼ ~p⊥
i þ αi

2
~P⊥: ð37Þ

The momentum k corresponds with the relative momentum
of the free two nucleon state with identical light-front
momentum components (P−, P⊥) as the deuteron, and the

FIG. 3. Impulse approximation diagram in the VNA. For the
inclusive reaction, we integrate over the phase space of the
spectator nucleon.
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where !S is the 3×3 matrix representing the spin operator
!̂S for the spin-1 hadron. The polarization vector !P and
the rank-2 spin tensor Tij are defined by

!P = 〈 !̂S 〉, Tij =
1

2

√
3

2

(
〈 ŜiŜj + ŜjŜi 〉 −

4

3
δij

)
. (24)

The degrees of vector and tensor polarizations are given

by P =
√
!P2 and T =

√∑
i,j(Ti,j)2. If the probabilities

of spin states +1, 0, and −1 are denoted as p+1, p0, and
p−1, respectively, by taking the z′-axis as the quantiza-
tion axis, the vector and tensor polarizations are

Pz′ = p+ − p−, Tz′z′ =
1√
6
(1 − 3 p0). (25)

respectively. We denote this tensor polarization also as

T̃‖‖ =
1√
6
(1− 3p0). (26)

The inclusive cross section of a charged-lepton deep
inelastic scattering from a spin-1 target is generally ex-
pressed as

dσ

dx dQ2
=

πy2α2

Q4(1 − ε)

[
FUU,T + εFUU,L

+ T‖‖ (FUTLL,T + εFUTLL,L)

+ T‖⊥ cosφT‖

√
2ε(1 + ε)F

cosφT‖

UTLT

+ T⊥⊥ cos(2φT⊥) εF
cos(2φT⊥

)
UTTT

]
, (27)

in terms of the spin-dependent factors and structure func-
tions [18]. Here, the z-axis is taken along the virtual-
photon momentum direction (!q /|!q |). Then, the polar-
ization factors T‖‖, T‖⊥, and T⊥⊥ are related to Tij

by the relations T‖‖ = Tzz, T‖⊥ cosφT‖
= Txz, and

T⊥⊥ cos(2φT⊥) = Txx − Tyy by assigning the angles φT‖

and φT⊥ . Namely, the tensor T is decomposed in three
parts: a projection on the longitudinal direction (T‖‖),
a projection on the transverse space (T⊥⊥) and a mixed
projection (T‖⊥), where longitudinal and transverse are
relative to !q. The angle φT‖

is the azimuthal angle of
the transverse part of the mixed projection, and the an-
gle φT⊥ is the azimuthal angle in the transverse space of
the projection. If the deuteron is polarized along the vir-
tual photon direction, only T‖‖ is nonzero and given by
Eq. (26). If the deuteron is polarized along the lepton-
beam axis, we have φT‖

= φT⊥ = 0, and the remaining

polarization factors in Eq. (27) can be related to T̃‖‖ of
Eq. (26) through the transformation properties of the
density matrix under rotations as follows:

T‖‖ =
1

4
[1 + 3 cos(2θq)] T̃‖‖, T‖⊥ =

3

4
sin(2θq) T̃‖‖,

T⊥⊥ =
3

4
[1− cos(2θq)] T̃‖‖, (28)

where θq is the angle between the lepton-beam (z′) and
virtual-photon (z) direction. The variables y and γ are
defined by the spin-1 hadron momentum P , its mass M ,
the initial lepton momentum *, the momentum transfer
q, and Q2 as

y =
P · q
P · *

, γ =

√
Q2

ν
=

√
1− κ (29)

The factor ε indicates the degree of the longitudinal po-
larization of the virtual photon as it appears in front of
the longitudinal structure function FUU,L, and it is given
by

ε =
1

1 + (1 + ν2/Q2) tan2(θ/2)
, (30)

where θ is the scattering angle of the charged lepton. The
six structure functions in Eq. (27) can be written by the
virtual photon helicity amplitudes of the hadronic tensor
in Eq. (13). Then, the tensor polarized structure func-
tions, which are used to calculate b1 below, are expressed
by the photon helicity amplitudes as

FUTLL,L =
4√
6
(A+0,+0 −A00,00) ,

FUTLL,T =
2√
6
(A++,++ − 2A+0,+0 +A+−,+−) ,

F
cosφT‖

UTLT
= −

4√
6
&e (A+0,0+ −A+−,00) ,

F
cos(2φT⊥

)
UTTT

= −
√

2

3
&eA+−,−+ . (31)

Using the expression of Eq. (1) for the hadron tensor in
terms of the polarized structure functions b1−4 and the
helicity amplitude definition of Eq. (13), we obtain [18]

FUTLL,L =
1

xD

√
2

3

[
2(1 + γ2)xDb1 − (1 + γ2)2

(
1

3
b2 + b3 + b4

)

−(1 + γ2)

(
1

3
b2 − b4

)
−
(
1

3
b2 − b3

)]
,

FUTLL,T = −
1

xD

√
2

3

[
2(1 + γ2)xb1 − γ2

(
1

6
b2 −

1

2
b3

)]
,

F
cosφT‖

UTLT
= −

√
2

3

γ

2xD

[
(1 + γ2)

(
1

3
b2 − b4

)
+

(
2

3
b2 − 2b3

)]
,

F
cos(2φT⊥

)
UTTT

= −
√

2

3

γ2

xD

(
1

6
b2 −

1

2
b3

)
. (32)

Therefore, the b1 is written through the structure func-
tions FUTLL,T and FUTTT

as

b1 = −
1

1 + γ2

√
3

8

[
FUTLL,T + F

cos(2φT⊥
)

UTTT

]
. (33)

We also show the relation between these structure
functions and the EPW function bEPW

1 , which is related
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where !S is the 3×3 matrix representing the spin operator
!̂S for the spin-1 hadron. The polarization vector !P and
the rank-2 spin tensor Tij are defined by

!P = 〈 !̂S 〉, Tij =
1

2

√
3

2

(
〈 ŜiŜj + ŜjŜi 〉 −

4

3
δij

)
. (24)

The degrees of vector and tensor polarizations are given

by P =
√
!P2 and T =

√∑
i,j(Ti,j)2. If the probabilities

of spin states +1, 0, and −1 are denoted as p+1, p0, and
p−1, respectively, by taking the z′-axis as the quantiza-
tion axis, the vector and tensor polarizations are

Pz′ = p+ − p−, Tz′z′ =
1√
6
(1 − 3 p0). (25)

respectively. We denote this tensor polarization also as

T̃‖‖ =
1√
6
(1− 3p0). (26)

The inclusive cross section of a charged-lepton deep
inelastic scattering from a spin-1 target is generally ex-
pressed as

dσ

dx dQ2
=

πy2α2

Q4(1 − ε)

[
FUU,T + εFUU,L

+ T‖‖ (FUTLL,T + εFUTLL,L)

+ T‖⊥ cosφT‖

√
2ε(1 + ε)F

cosφT‖

UTLT

+ T⊥⊥ cos(2φT⊥) εF
cos(2φT⊥

)
UTTT

]
, (27)

in terms of the spin-dependent factors and structure func-
tions [18]. Here, the z-axis is taken along the virtual-
photon momentum direction (!q /|!q |). Then, the polar-
ization factors T‖‖, T‖⊥, and T⊥⊥ are related to Tij

by the relations T‖‖ = Tzz, T‖⊥ cosφT‖
= Txz, and

T⊥⊥ cos(2φT⊥) = Txx − Tyy by assigning the angles φT‖

and φT⊥ . Namely, the tensor T is decomposed in three
parts: a projection on the longitudinal direction (T‖‖),
a projection on the transverse space (T⊥⊥) and a mixed
projection (T‖⊥), where longitudinal and transverse are
relative to !q. The angle φT‖

is the azimuthal angle of
the transverse part of the mixed projection, and the an-
gle φT⊥ is the azimuthal angle in the transverse space of
the projection. If the deuteron is polarized along the vir-
tual photon direction, only T‖‖ is nonzero and given by
Eq. (26). If the deuteron is polarized along the lepton-
beam axis, we have φT‖

= φT⊥ = 0, and the remaining

polarization factors in Eq. (27) can be related to T̃‖‖ of
Eq. (26) through the transformation properties of the
density matrix under rotations as follows:

T‖‖ =
1

4
[1 + 3 cos(2θq)] T̃‖‖, T‖⊥ =

3

4
sin(2θq) T̃‖‖,

T⊥⊥ =
3

4
[1− cos(2θq)] T̃‖‖, (28)

where θq is the angle between the lepton-beam (z′) and
virtual-photon (z) direction. The variables y and γ are
defined by the spin-1 hadron momentum P , its mass M ,
the initial lepton momentum *, the momentum transfer
q, and Q2 as

y =
P · q
P · *

, γ =

√
Q2

ν
=

√
1− κ (29)

The factor ε indicates the degree of the longitudinal po-
larization of the virtual photon as it appears in front of
the longitudinal structure function FUU,L, and it is given
by

ε =
1

1 + (1 + ν2/Q2) tan2(θ/2)
, (30)

where θ is the scattering angle of the charged lepton. The
six structure functions in Eq. (27) can be written by the
virtual photon helicity amplitudes of the hadronic tensor
in Eq. (13). Then, the tensor polarized structure func-
tions, which are used to calculate b1 below, are expressed
by the photon helicity amplitudes as

FUTLL,L =
4√
6
(A+0,+0 −A00,00) ,

FUTLL,T =
2√
6
(A++,++ − 2A+0,+0 +A+−,+−) ,

F
cosφT‖

UTLT
= −

4√
6
&e (A+0,0+ −A+−,00) ,

F
cos(2φT⊥

)
UTTT

= −
√

2

3
&eA+−,−+ . (31)

Using the expression of Eq. (1) for the hadron tensor in
terms of the polarized structure functions b1−4 and the
helicity amplitude definition of Eq. (13), we obtain [18]

FUTLL,L =
1

xD

√
2

3

[
2(1 + γ2)xDb1 − (1 + γ2)2

(
1

3
b2 + b3 + b4

)

−(1 + γ2)

(
1

3
b2 − b4

)
−
(
1

3
b2 − b3

)]
,

FUTLL,T = −
1

xD

√
2

3

[
2(1 + γ2)xb1 − γ2

(
1

6
b2 −

1

2
b3

)]
,

F
cosφT‖

UTLT
= −

√
2

3

γ

2xD

[
(1 + γ2)

(
1

3
b2 − b4

)
+

(
2

3
b2 − 2b3

)]
,

F
cos(2φT⊥

)
UTTT

= −
√

2

3

γ2

xD

(
1

6
b2 −

1

2
b3

)
. (32)

Therefore, the b1 is written through the structure func-
tions FUTLL,T and FUTTT

as

b1 = −
1

1 + γ2

√
3

8

[
FUTLL,T + F

cos(2φT⊥
)

UTTT

]
. (33)

We also show the relation between these structure
functions and the EPW function bEPW

1 , which is related

6



This can be seen by putting θq = 0 in Eq. (47). The
surviving structure functions in the scaling limit after
applying the Callan-Gross relations become

FUTLL,T = −2

√
2

3
b1, FUTLL,L = 0 ,

FUU,T = 2F1, FUU,L = 0 , (49)

which leads to Eq. (48). The theory 2 includes higher-

twist corrections and can test the above assumptions.
According to our estimate, there are significant higher-
twist effects, so that the Callan-Gross relations are not
satisfied and the functions b3,4 are not very small in com-
parison with the leading ones b1,2 as shown in Table. I.
These observations and the value of γ for the HERMES
kinematics indicate that including higher-twist effects
might be needed for an improved extraction of b1.

TABLE I. Theory-2 calculations of the four tensor-polarized structure functions for kinematics of the HERMES b1 data [20].

x Q2 (GeV2) b1(10
−4) b2(10

−5) b3(10
−3) b4(10

−3) b2/(2xDb1) γ
0.012 0.51 2.81 0.264 -1.34 5.06 0.783 0.0315
0.032 1.06 6.92 1.97 -1.87 7.51 0.890 0.0583
0.063 1.65 3.50 0.265 -2.02 7.96 0.120 0.0920
0.128 2.33 -1.80 -7.38 -2.13 7.49 3.20 0.157
0.248 3.11 -8.39 -28.1 -2.09 4.58 1.35 0.264
0.452 4.69 -6.18 -21.7 -1.11 -0.58 0.777 0.392

IV. RESULTS

In showing our numerical results on b1 in the con-
volution picture, we need to choose (1) deuteron wave
function, (2) parton distribution functions (PDFs),
and (3) longitudinal-transverse structure function ra-
tio. Here, the CD-Bonn wave function is used for the
deuteron [40], the MSTW2008 (Martin-Stirling-Thorne-
Watt, 2008) leading-order (LO) parametrization for the
PDFs [41], and the SLAC-R1998 parametrization for the
longitudinal-transverse ratio R [42]. We also tested other
wave functions and parametrizations, but numerical re-
sults do not change by a significant amount. There is
a source of the uncertainty due to our knowledge of the
high-momentum part of the deuteron wave function, and
it reveals itself at x > 0.8 kinematics. The experimental
separation energy of the deuteron 2.22457 MeV [43] is
used in our numerical evaluation.

In Fig. 4, the calculated functions xb1 are shown for the
SD interference term (∝ φ0φ2), DD term (∝ |φ2|2), and
their summation at Q2=2.5 GeV2 by using the two con-
volution descriptions in Eqs. (16) and (44). This Q2 scale
is taken because of later comparison with the HERMES
data, where the Q2 average is Q2=2.5 GeV2. The SD
contribution is larger than the DD one; however, the DD
term is not small as suggested by the magnitude of the
D-state admixture of 4.85% [40]. It indicates that high-
momentum components of the deuteron wave functions
play an important role in the standard convolution de-
scription for b1. Furthermore, the overall sign of the SD
term is opposite to the previous estimate in Ref. [4]. Our
convolution formalisms are similar to the one in Ref. [4];

however, the SD term is completely different even in sign.
Since the SD contribution is the dominant term, this find-
ing is important for future studies for an experimental
comparison and in considering possible theoretical mech-
anisms of the tensor polarization in the parton level.
In addition, it is noteworthy to find the distribution at

x > 1, whereas it vanishes according to the analysis of
Ref. [4]. However, this region will be dominated by quasi-
elastic scattering at moderate Q2, and it will require
the subtraction of this contribution for the DIS analy-
sis. Since the Bjorken x is defined by the same definition
as Eq. (6) in the convolution equations of Refs. [2, 4], al-
though it seems to be defined by x = Q2/(2Mν) with
the deuteron mass M in the beginning of the Hoodbhoy-
Jaffe-Manohar paper, the function b1 should be finite
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0.0015
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x
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DD
SD

Theory 1

Theory 2

FIG. 4. The structure function b1 calculated by the two con-
volution descriptions of Eqs. (16) and (44) at Q2=2.5 GeV2.
The dashed, dotted, and solid curves indicate contributions to
xb1 from the SD term, DD term, and their summation. Two
sets of theory curves are shown for the theory 1 and theory 2.
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FUTLL,T = −
∫

k2

αi
dk d(cos θk)

[
FN
1 (xi, Q

2)−
T 2

2 pi · q
FN
2 (xi, Q

2)

]

×
√

3

2

[
U(k)W (k)√

2
+

W (k)2

4

]
[3 cos(2θk) + 1],

F
cos(2φT⊥

)
UTTT

= −
∫

k2

αi
dk d(cos θk)

−T 2

2 pi · q
FN
2 (xi, Q

2)

√
3

2

[
U(k)W (k)√

2
+

W (k)2

4

]
sin2 θk, (42)

where the structure functions FN
1 and FN

2 are defined by the averages of the proton and neutron functions as defined
in Sec. III A and θk is the angle between #k and #q. Here, T µ and Lµ are defined by

T µ = pµN +
pN · q
Q2

qµ −
pN · L
L2

Lµ, Lµ = Pµ +
P · q
Q2

qµ. (43)

The nucleon structure functions FN
1 and FN

2 are evaluated at xi = Q2/(2pi · q) $ x/αi. Substituting the structure
functions of Eq. (42) into Eq. (33), we finally obtain the expression for b1 in the VNA model,

b1(x,Q
2) =

3

4(1 + γ2)

∫
k2

αi
dk d(cos θk)

[
FN
1 (xi, Q

2)
(
6 cos2 θk − 2

)
−

T 2

2 pi · q
FN
2 (xi, Q

2)
(
5 cos2 θk − 1

)]

×
[
U(k)W (k)√

2
+

W (k)2

4

]
. (44)

In deriving this expression of the theory 2, the Bjorken
scaling limit is not taken and the higher-twist effects are
contained as it is clear by the additional term of FN

2
in comparison with Eq. (16) of the theory 1. Because
of the higher-twist effects included, for self-consistency,
the theory 2 should include nucleon structure functions
that also contain higher-twist effects. For the purpose
of the comparison with the theory 1 in evaluating only
higher-twist effects originating from the nuclear part, we
use the same nucleon structure function used in theory 1
[Eq. (22)].

C. Tensor-polarization asymmetry Azz and
structure function b1

In the unpolarized charged-lepton DIS from the po-
larized deuteron like the HERMES experiment [20], the
cross section with target polarization along the beam di-
rection is written as

dσ

dxdQ2
=

dσU

dxdQ2

(
1 +

1

2
PzzAzz

)
, (45)

where dσU/dxdQ2 is the unpolarized cross section, and
Pzz is related to the density matrix variables defined in
the beginning of Sec. III B as

Pzz =
√
6 T̃zz = p+ + p− − 2p0 . (46)

Comparing Eq. (45) with Eq. (27), we can write the ten-
sor asymmetry Azz as

Azz =
2σ+ − 2σ0

2σ+ + σ0
=

√
2

4
√
3 (FUU,T + εFUU,L)

×
{
[1 + 3 cos(2θq)] (FUTLL,T + εFUTLL,L)

+ 3 sin(2θq)
√

2ε(1 + ε)F
cosφT‖

UTLT

+ 3[1− cos(2θq)]εF
cos 2φT⊥
UTTT

}
, (47)

where σi is the cross section with the target polarization
i along the beam (z′ axis) and we took σ+ = σ− because
of the parity invariance.
In the HERMES analysis, b1 was then extracted from

Azz using

Azz = −
2

3

b1
F1

. (48)

This equation is correct as an equality if the following
two conditions are satisfied.

(1) The deuteron is polarized along the photon direc-
tion, namely θq = 0.

(2) The Bjorken scaling limit (Q2 → ∞, xfinite, γ → 0)
is taken. It implies the Callan-Gross relations for
the structure functions (2xDF1 = F2, 2xDb1 = b2)
and neglect of the higher-twist structure functions
b3,4.
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FIG. 1: The tensor asymmetry Ad
zz(x). The error bars are

statistical and the shaded band shows the systematic uncer-
tainty.

due to radiative and detector smearing is treated using
an unfolding algorithm, which is only sensitive to the de-
tector model, the known unpolarized cross section, and
the models for the background processes [10]. The radia-
tive background is negligible at high x but increases as
x → 0 and reaches almost 50 % of the statistics in the
lowest-x bin. The radiative corrections are calculated
using a Monte Carlo generator based on RADGEN [9].
The coherent and quasi-elastic radiative tails are esti-
mated using parameterizations of the deuteron form fac-
tors [11, 12] and corrected for the tracking inefficiency
due to showering of the radiated photons. The polarized
part of the quasi-elastic radiative tail is neglected since
there is no net tensor effect by inclusive scattering on
weakly-bound spin-1/2 objects [13]. The extracted tensor
asymmetry Ad

zz is shown in Fig. 1 and listed in Table II.
It appears to be positive at high x and is negative at low
x, crossing zero at an x value of about 0.2. In the lowest-
x bin, the asymmetry is not zero at the 2-sigma level
only after the subtraction of the radiative background.
The magnitude of the observed tensor asymmetry Ad

zz

does not exceed 0.02 over the measured range; from this
result and using Eqs. (3) and (4), the fractional correc-
tion to the Hermes gd1 measurement due to the tensor
asymmetry is estimated to be less than 0.01.

The particle identification efficiency and the target po-
larization measurement give negligible contributions to
the systematic uncertainty. The normalization uncer-
tainty between different injection modes of the ABS is
≈ 1× 10−3 and correlated over the kinematic bins. This
uncertainty is estimated by the observed 2-sigma offset
from zero of the asymmetry between averaged vector,

2σ1 = σ
→

⇒ + σ
→

⇐, and tensor+, σ0 replaced by σ⇔ in
Eq. (2), non-zero helicity injection modes. The lumi-
nosity measurement is sensitive to possible residual po-
larization of the target gas electrons. The asymmetries
obtained by normalizing the yields to the luminosity-
monitor rates, or to the beam-current times the target-
gas analyzer rates, are in good agreement within the

quoted normalization uncertainty. The subtraction of
the radiative background inflates the size of the statis-
tical and the above mentioned systematic uncertainties
by almost a factor of 2 at low x. The systematic uncer-
tainty of the radiative corrections is ≈ 2 × 10−3 for the
three bins at low x and negligible at high x. A possi-
ble misalignment in the spectrometer geometry yields an
uncertainty ≈ 3 × 10−3 in the bins where the asymme-
try changes sign. All the contributions to the systematic
uncertainty are added in quadrature. The two subsam-
ples of data with opposite beam helicities were analyzed
independently and gave consistent Ad

zz results.
The tensor structure function bd1 is extracted from the

tensor asymmetry using the relations [18, 27]

bd1 = −
3

2
Ad

zz F
d
1 ; F d

1 =
(1 +Q2/ν2)F d

2

2x(1 +R)
. (5)

No contribution from the hitherto unmeasured double
spin-flip structure function ∆ [14] is considered here, be-
ing kinematically suppressed for a longitudinally polar-
ized target [15]. The structure function F d

2 is calculated
as F d

2 = F p
2 (1 + F n

2 /F
p
2 )/2 using the parameterizations

of the precisely measured structure function F p
2 [16] and

F n
2 /F

p
2 ratio [17]. In Eq. (5), R = σL/σT is the ratio

of longitudinal to transverse photo-absorption cross sec-
tions [18] and ν is the virtual-photon energy. The results
for bd1 are listed together with those for Ad

zz in Table II.
The x-dependence of bd1 is displayed in Fig. 2. The data
show that bd1 is different from zero for x < 0.1, its mag-
nitude rises for decreasing values of x and, for x ! 0.03,
becomes even larger than that of gd1 at the same value of
Q2 [8].
Because the deuteron is a weakly-bound state of spin-

1/2 nucleons, bd1 was initially predicted to be negligi-
ble, at least at moderate and large values of x (x >
0.2) [19, 20], where it should be driven by nuclear bind-
ing and Fermi motion effects. It was later realized that
bd1 could rise to values which significantly differ from
zero as x → 0, and its magnitude could reach about
1% of the unpolarized structure function F d

1 , due to
the same mechanism that leads to the well known ef-
fect of nuclear shadowing in unpolarized scattering [21].

TABLE II: Measured values (in 10−2 units) of the tensor
asymmetry Ad

zz and the tensor structure function bd1 . Both
the corresponding statistical and systematic uncertainties are
listed as well.

〈x〉 〈Q2〉 Ad
zz ±δAstat

zz ±δAsys
zz bd1 ±δb1

stat ±δb1
sys

[GeV2] [10−2] [10−2] [10−2] [10−2] [10−2] [10−2]
0.012 0.51 -1.06 0.52 0.26 11.20 5.51 2.77
0.032 1.06 -1.07 0.49 0.36 5.50 2.53 1.84
0.063 1.65 -1.32 0.38 0.21 3.82 1.11 0.60
0.128 2.33 -0.19 0.34 0.29 0.29 0.53 0.44
0.248 3.11 -0.39 0.39 0.32 0.29 0.28 0.24
0.452 4.69 1.57 0.68 0.13 -0.38 0.16 0.03

Can we really neglect b3 and b4 for all the kinematics of Azz and b1?

HERMES results:

Theory results:

In the virtual nucleon approximation 



Next:


* Wim will estimate the effects of  b3,4 in his framework for both longitudinal and q-vector polarizations.

   Time estimate of the calculations: Last week of July

* From the paper we can estimate the effects using his calculations for HERMES data.
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2. Image test


