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From section 6 of Hoodbhoy, Jaffe and Manohar (Nuc. Phys. B312,
p571-588, 1989), we have:

dσH
‖

dxdy
= K

[

xF1(x) +
(2

3
− H2

)

xb1(x)

]

(1)

dσH
⊥

dxdy
= K

[

xF1(x) −
(1

3
− 1

2
H2
)

xb1(x)

]

(2)

with K = e4ME
2πQ4 [1 + (1 − y)2].

For simplicity, we will use σ‖ for
dσH

‖

dxdy
and σ⊥ for

dσH

⊥
dxdy

. From Jaffe’s

email, we now know that H2 = (P + 2)/3, where P is the polarization of

the target. Comparing
dσH

‖

dxdy
with eq. 2.13 of Caroline Reidl’s thesis, we can

identify that P = Pzz and it is the tensor polarization.
The tensor polarization can be extracted from Pz as follows:

Pzz = 2 −
√

4 − 3P 2
z (3)

The tensor asymmetry Azz depends on b1 and F1:
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2
Azz (4)



The deuterium rates are estimated from the unpolarized deuteron cross
section σD using MSTW2008:

RD = σD dp dΩ L = σD dp dΩ
I

e
nD (5)

where L is the luminosity and the number of deuteron scattering centers in
ammonia is:

nD = 3 · NA · ρND3

MND3

· pf · z (6)

where the factor 3 is for three deuterons in each ammonia molecule, NA

is the Avogadro’s number, ρND3
is the ammonia density (= 1.007 g/cm3),

MND3
is the ammonia molecular mass (= 20 g/mole), pf is the packing

fraction (= 0.55) and z is target length (= 3 cm). The dilution factor f
does not appear in this equation but used below.

To estimate the physics rates, the spectrometer acceptance and momen-
tum bite were reduced to dΩ = 6.5 msr and dp = ±8% for the HMS and
dΩ = 4.4 msr and dp =+20%

−8%
for SHMS and a cut on W ≥ 1.8 GeV was

required.

1 Access to b1 from the cross section difference

The deuteron target is diluted by the nitrogen contained in ND3. So we can
extract the deuteron contribution by substracting the nitrogen background
σU
‖,⊥ as follows:

σT
⊥ = σD

⊥ + σU
⊥

σT
‖ = σD

‖ + σU
‖ (7)

(8)

Working with the equations of σ‖ and σ⊥, we can isolate b1:

σT
‖ − σT

⊥ = σD
‖ − σD

⊥ =
−K

6
(2P ‖

zz + P⊥
zz)xb1 (9)

where P
‖
zz and P⊥

zz are the tensor polarization achieved in the longitudinal
and transverse configurations respectively. The unpolarized cross sections
must be equal and therefore cancel. The expression of the unpolarized ma-
terial cross sections can be simplified to: σU

⊥ = σU
‖ = σU .
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In our measurement of b1, we will get contributions from both the po-
larized and the unpolarized target materials, so the statistical uncertainty
on b1 should take into account the nitrogen background:
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In the valence region, b1 < 0 which implies σD
⊥ < σD

‖ . In addition, b1 is

small and we can define the difference between σD
⊥ and σD

‖ as:

σD
‖ = (1 + ǫ)σD

⊥ and δσD
‖ = (1 + ǫ)δσD

⊥ (11)

Using these two relations in the expression of δb1/b1 and with 2ǫ and ǫ2

negligible compared to 2, we obtain:
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We know that the cross sections are proportional to the counts NT
⊥ , ND

⊥ ,

etc, and the cross section errors to
√

NT
⊥ ,
√

ND
⊥ , etc. So we write:

δb1

b1

= −
√

2

ǫ

√
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⊥

ND
⊥

(13)

We also know that the dilution factor is the ratio of polarized to total
cross sections, or polarized counts to total counts:

f(x,Q2) =
ND

⊥ (x,Q2)

NT
⊥(x,Q2

) ∝ σD
⊥ (x,Q2)

σT
⊥(x,Q2)

(14)
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In the region of our measurement, the ratio of cross sections is 0.3 to a
good approximation, given the equal numbers of protons and neutrons in D,
14N and 4He (the rates from He are suppressed by the packing fraction and
ρHe << ρND3

).
Substituting NT

⊥ = ND
⊥ /f , we
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√
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ND =
2

ǫ2f(δb1/b1)2
(16)

The time necessary to achieve this statistics is:
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=
2

ǫ2RDf(δb1/b1)2
(17)

Similarly, substituting ND
⊥ = f · NT

⊥
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NT
⊥ =

2

ǫ2(fδb1/b1)2
(19)

and in terms of the total rate RT = RD/f , so the expression of the time will
be:

T =
NT

⊥

RT

=
2

ǫ2RT (fδb1/b1)2
=

2

ǫ2(RD/f)(fδb1/b1)2
(20)

identical as Eq. 17, as expected.
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1.1 Working with the relative error on b1

Now to estimate the time necessary to perform a significant measurement
of b1 we need to have a idea of the value of ǫ.

σ‖ = σu(1 − 1

3
P ‖

zz

b1

F1

) (21)

σ⊥ = σu(1 +
1

6
P⊥

zz

b1

F1

) (22)

with σu the unpolarized cross section.

1 + ǫ =
1− 1

3
P

‖
zz

b1

F1

1+ 1

6
P⊥

zz

b1

F1

(23)

We use for bd
1 the fit from Kumano and for F d

1 MSTW2008 (no EMC effect
or smearing included). For x-values of 0.30, 0.40 and 0.50, ǫ is equal to

0.00034, 0.00070 and 0.00099 respectively, assuming P⊥
zz = P

‖
zz = 0.094 for

a vector polarization of Pz = 0.35.

1.2 Working with the absolute error on b1

In order to extract the absolute uncertainty on b1 and the time necessary
to reach an absolute uncertainty δb1, we multiply both sides Eq. 23 by
1 + 1

6
P⊥

zz
b1
F1

and only use the approximation that ǫ << 1. We obtain:
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The absolute error on b1 has then the following expression:
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and the time necessary to obtain an absolute error δb1 is:

T =
2

f RD δb2
1

(

b1

ǫ

)2
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Figure 1: Projected statistical uncertainties for 28 days of production data
with the new kinematics for the HMS (at 13.4◦).

=
72 F 2

1

f RD (2P
‖
zz + P⊥

zz)
2 δb2

1

(26)

Table 1: Updated kinematics, rates and projected uncertainties for b1 and
Azz.

Spectro x̄ Q̄2 W̄ P0 θ Rates δAzz δb1 time
(GeV2) (GeV) (GeV) (deg.) (kHz) ×10−2 ×10−2 (days)

tensor polarization Pzz = 9.4%

SHMS 0.30 1.5 2.11 8.46 7.28 0.262 0.19 0.13 15.64
SHMS 0.40 2.2 2.07 8.20 8.96 0.079 0.40 0.15 12.41
HMS 0.50 4.1 2.25 6.83 13.42 0.007 0.87 0.15 28.00

tensor polarization Pzz = 12.2%

SHMS 0.30 1.5 2.11 8.46 7.28 0.262 0.15 0.10 15.50
SHMS 0.40 2.2 2.07 8.20 8.96 0.079 0.30 0.12 12.83
HMS 0.50 4.1 2.25 6.83 13.42 0.007 0.66 0.12 28.33
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Figure 2: Projected statistical uncertainties for 28 days of production data
with the new kinematics for the HMS (at 13.4◦). An improvement of the
tensor polarization of 2.8% absolute was assumed in this case.

1.3 Systematics

There is no contribution from the dilution factor, which only affects the
statistics, not the systematics uncertainties, since we measure both σT and
σD with the same systematics. Starting from Eq. 9 and the approximations
of Eqs. 11, we have:

b1 = − 6

x K (2P
‖
zz + P⊥

zz)
(σD

‖ − σD
⊥ )

=
6 ǫ

x K (2P
‖
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zz)
σD
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Therefore, the relative systematics uncertainty on b1 is directly equal to
the relative systematics uncertainties on σD

⊥ :

(

δb1

b1

)

syst

=

(

δσD
⊥

σD
⊥

)

syst

(28)

assuming that the σD
⊥ and σD

‖ have the same systematics.
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