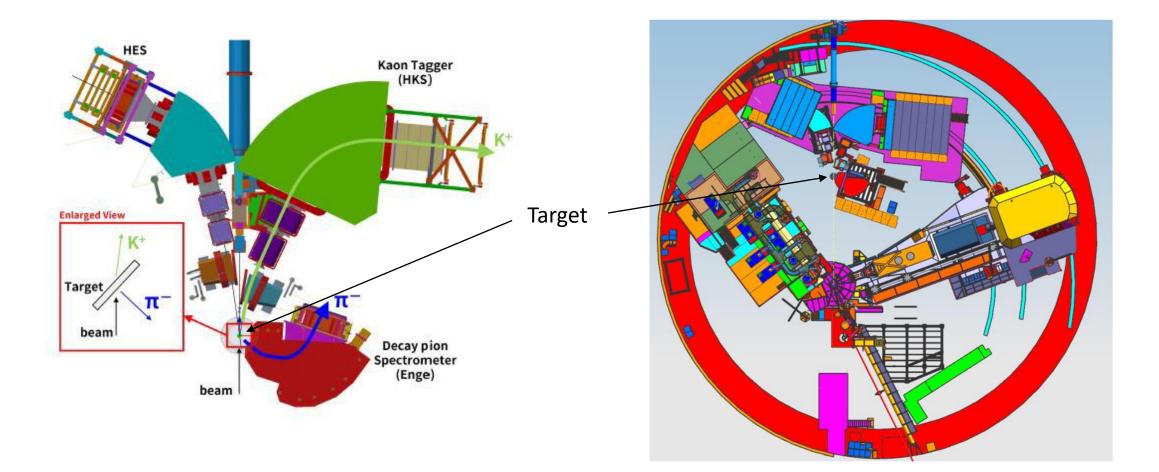
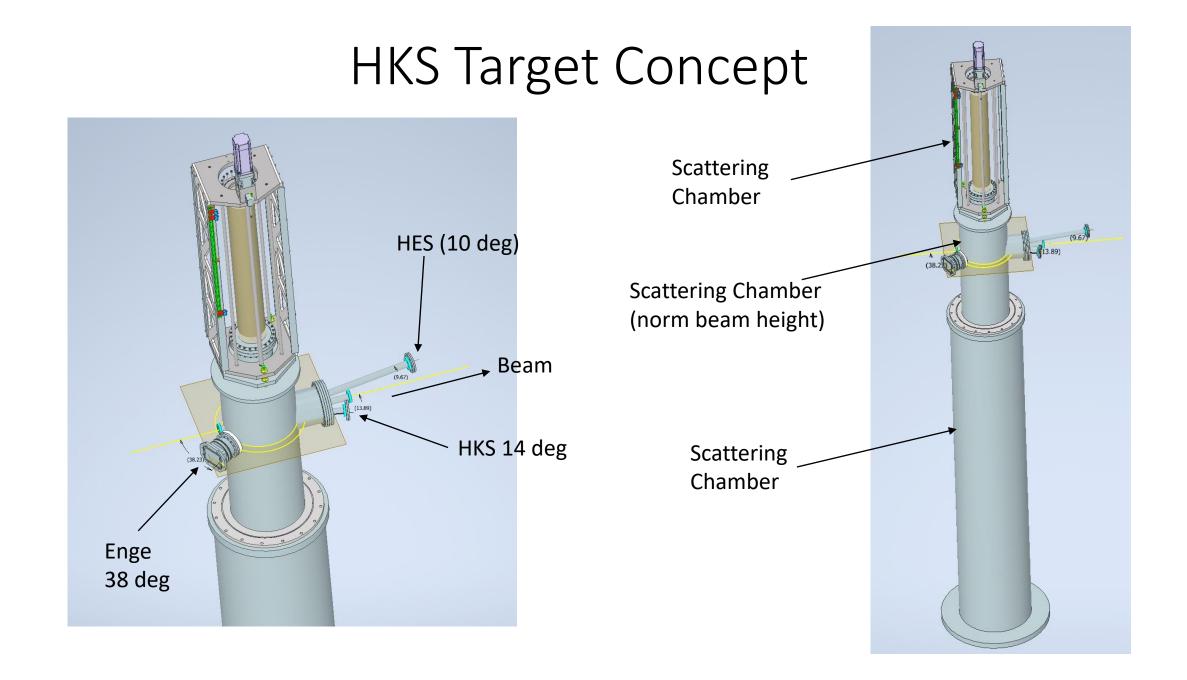
Hypernuclear Target Conceptual Design Elements and Cost

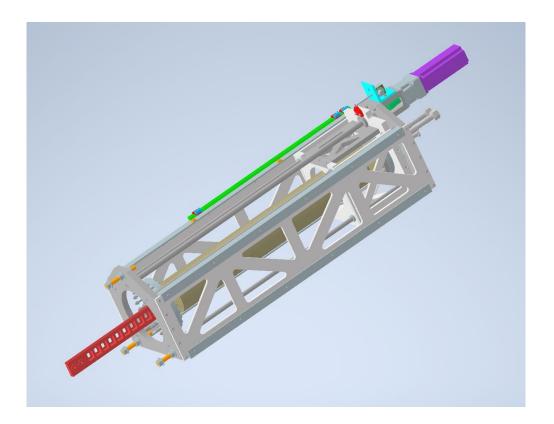
David Meekins

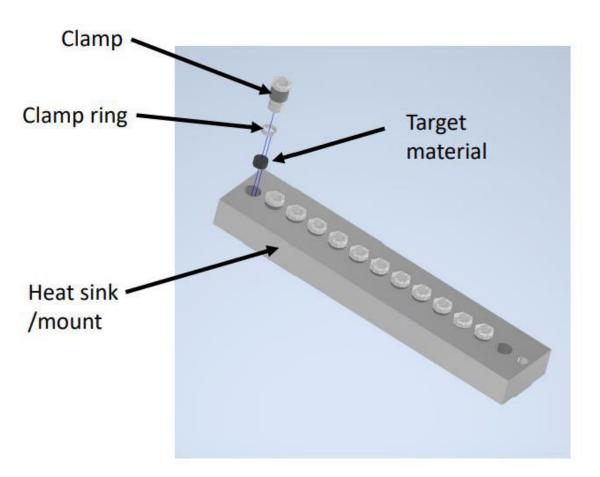

Hall C Hypernuclear Experimental Readiness Review


18 November 2024

Design Status

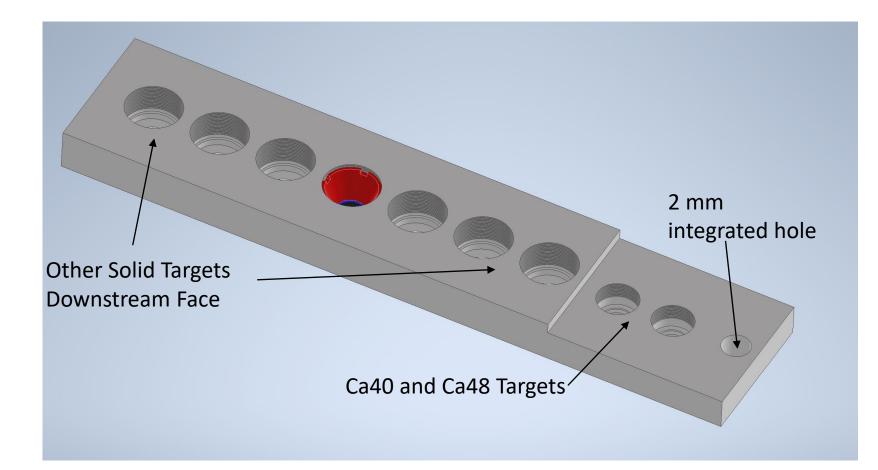
- Currently in very early stages of the design
 - Adapting the PREX/CREX target system to HKS needs
- Working 2 options
 - Only present the solid target system without fluid targets
 - Ideally we would fabricate one system for both fluid and solid targets
- Original design concept was to adapt the $x_b > 1$ target ladder to HKS
 - This will not meet our needs for three spectrometer operations (ENGE) which presents challenges to the mounting scheme
- Thermal analyses confirm our concept is acceptable for 3 spectrometer operation for all solid targets at the proposed beam currents.
- Will need to work on design to allow alignment


Hall C HKS Layout

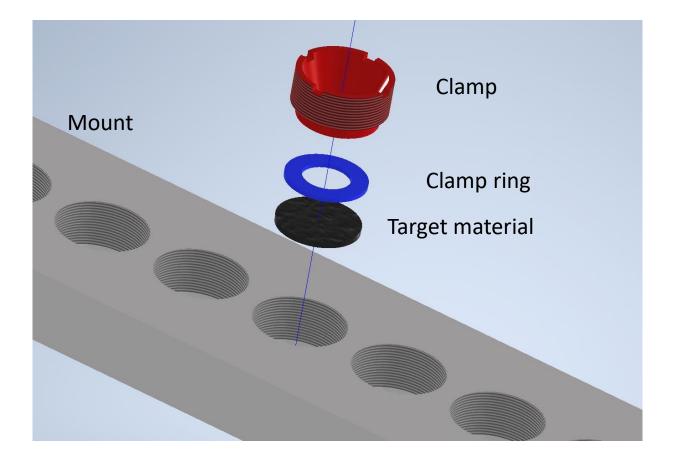

Motion System and Ladder

- Adapt PREX target to HKS.
 - Horz to vertical (Beam y)
- Cryogenic system
 - Component design used for PREX
- Greater than 24 inches of linear travel
 - This can accommodate all solid and fluid targets
 - Difficult to align we do not have 6 deg of freedom
- We can use existing gas handling system for fluid targets
- We can also use much of the existing control system
 - Epics based

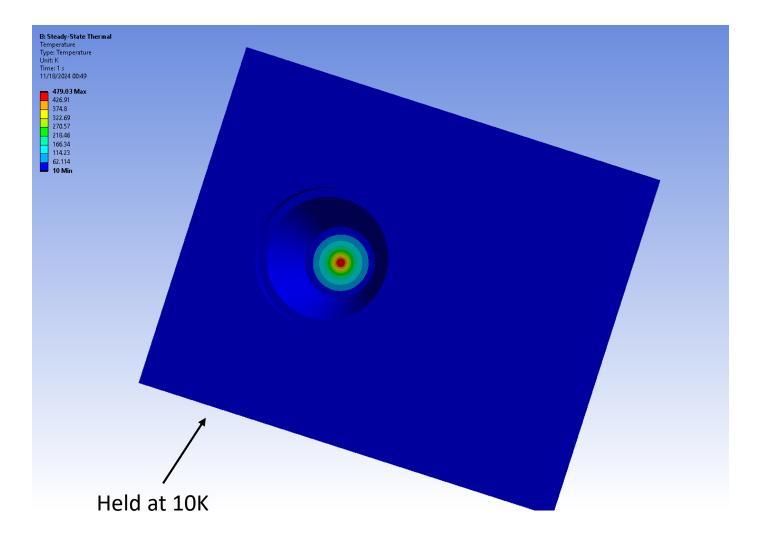
Repurpose $x_b > 1$ Ladder


- Upstream face view shown to right
- The acceptance of Enge will be shadowed by the mount system
- Design features excellent thermal contact for the target material and for the clamp
- Design is partially in response to beam missteering event in Hall A/CREX where Ca48 target was damaged.

Concept Solid Target Ladder


Calcium target mount is recessed for cost saving.

Without recess, \$120K more in Ca48


Concept Solid Target Ladder

- All components (ex targets) are aluminum 7075
- Nuclear grade antiseize used for better thermal cond and to prevent seizing
- All 9 targets can be accommodated with full acceptance for all three spectrometers

Thermal Model for Lead-208 Assy.

- $\rho t = 150 \, mg/cm^3$
- Beam current 25 microA
- t = 0.13 mm
- 6W of beam heat
- Power density is $11.6 W/cm^3$
- Walls held at 10K
- Material models
 - MPDB for lead
 - MPDB and Weisend for Aluminum 7075
- Max temp 479K
 - Lead melts at ~600K
 - FCC below 600K
- Independent analysis by S. Covrig-Dusa, F. Garibaldi, G.Urciuoli
 - Max temp ~400K
 - Slightly different geometry

Cost Estimate Non-labor

- Non-labor costs:
 - Target materials (detailed on next slide)
 - \$200K
 - Motion system \$50K
 - Frame \$20K
 - Bellows \$10K
 - Flanges/Fittings \$10K
 - Drive/Misc \$10K
 - Fluid target piping \$20K
 - T-lines \$20K
 - Transfer Can
 - Option 1: Reuse PREX can for solid targets only
 - Option 2: Possibly redesign/build for fluid targets (\$50K)
 - Chamber/Stand \$50K
 - Total: ~\$400K

Solid target costs

Target	z	Α	Thick (mg/cm^2)	Density (g/cc)	Req Thickness (cm)	Required Mass (mg)	Cost	lmax (microA)
Helium-3	2	3	(0.0325	200.000	(\$ 30,000.00	50
Helium-4	2	4		0.0335	200.000		\$ 30,000.00	50
Deterium	1	2		0.024	200.000			50
Hydrogen				0.01	200.000			50
CH2 (C2H4)n			0.45	0.93	0.484	1.647	\$ 500.00	2
Lithium-6	3	6	0.1	0.458	0.218	0.366	\$ 5,000.00	50
Beryllium	4	9	0.1	1.848	0.054	0.366	\$ 5,000.00	50
Calcium-40	20	40	0.15	1.55	0.097	<mark>0.230</mark>	\$ 10,000.00	50
Calcium-48	20	48	0.15	1.86	0.081	0.230	\$ 80,000.00	50
Carbon-12	6	12	0.15	1.8	0.083	0.549	\$ 500.00	50
B-11 (B4C)	5	11	0.15	2.52	0.060	0.549	\$ 7,000.00	50
Aluminum	13	27	0.15	2.699	0.056	0.549	\$ 500.00	50
Lead-208	82	208	0.15	11.4	0.013	0.549	\$ 25,000.00	25

Without adjustments to Ca targets, cost would go up at least \$120K.

Labor Resources Required to Fabricate

- Design solid targets only
 - Design Authority 480 hours
 - Designer 320 hours
- Fabrication
 - 6 months of calendar time at least for target group
 - Need welder, fitter, DA ...
 - Machine shop work (build to print components)
 - Ca48 can take up to 12 months to procure if approved by DOE.
- These estimates could carry significant measurement error
 - Procurement estimates are currently difficult to make.
 - Work processes have be significantly impacted by recent changes to procedures and requirements.