
Hall C Software
Development

From the perspective of a user

Outline

• Integration of Hall A/C software: Version

management with Git
o Overview of git in practice

o Examples of pushing/pulling updates

o Issue tracking

• Configuration of Hall A/C software: Development

of a new build system – SCons
o Overview of SCons

o Current status of build/configure system

Hall A/C Coordinated
Development with Git

• In response to previous recommendation, we are now managing Hall A and Hall C
software efforts with git.

• Hall C analysis (hcana) is being developed within the Hall A framework (PODD) ->
having an effective development management system is important to coordinate
these efforts.

• Hall C development has already spurred new efforts to improve PODD.

• Ongoing Fortran/hcana comparisons in parallel with new development makes
version control/management crucial to ensure meaningful comparisons.

• Modular nature of experiments in Hall C (and Hall A) requires ongoing and
continuous development of new analysis software, on an experiment-by-
experiment basis -> version control is essential

• Even experiments which use the same equipment often require different analysis
configurations, due to different kinematics configurations, etc.

Git Advantages
(User Perspective)

• Documentation of procedures to download and

install software exists, and is continually updated

(Wiki)

• Git (in contrast to CVS, Subversion, etc.) is based on

filesystem “snapshots”, and not “deltas”-> much

easier to back out changes … this makes the

development effort significantly easier for new users.

Development Workflow
using Github.com

• Online project hosting using git … many practical features which allow
easy visualization of development path.

• Developers use their own account on github.com to create “forks” of

JeffersonLab repositories.

• Changes are committed to a developer’s forked repository, and at some

point may be merged with the main JeffersonLab repository, via a pull
request.

• The “gatekeeper” for the Jefferson Lab repository governs this process

(Ole Hansen in Hall A and Steve Wood in Hall C).

• Gatekeeper model maintains limited write-access by developers/users to

Jefferson Lab repositories -> important for comparison studies

• Single gatekeeper model may evolve as we get closer to running

(through use of git “push teams”)

Current JLab Git Projects

• Hall A C++ Analyzer (Hall C submodule)

• Hall C C++ Analyzer

• Hall C Fortran engine

• Hall C Replay x 2 (for comparisons)

• Hall C Geant simulation of Compton Polarimeter

• SIMC (Monte Carlo for Halls A and C)

• SHMS Monte Carlo (for proposal development)

• TreeSearch (Hall A TreeSearch track reconstruction)

Development under Git

• Easy to install and update code on JLab systems as well as on
local (Mac and Linux) machines

o git clone git@github.com:brash99/analyzer.git
o git branch –a

• Master
• remotes/origin/HEAD -> origin/master

• remotes/origin/Release-070
• remotes/origin/Release-100
• remotes/origin/Release-110
• remotes/origin/Release-120
• remotes/origin/Release-130
• remotes/origin/Release-140
• remotes/origin/Release-150

• remotes/origin/master
• remotes/origin/scons_final_change
• remotes/origin/scons_link_develop
• remotes/origin/scons_link_develop_150

o git pull origin <branch-name>

mailto:git@github.com:JeffersonLab/analyzer.git

Example Network Graph

$ git checkout –b scons_final_change
(make changes)
$ git commit –a
$ git push origin scons_final_change

Analyzer Network

http://github.com/brash99/analyzer/network

Pull Requests

Users/developers who are “watching” development of the
JeffersonLab/analyzer repository are notified by email of pull requests.

Typically, other developers, as well as the gatekeeper, can make comments on
the proposed pull request prior to it being accepted (or rejected).

Details of Pull Request

Keeping forks up-to-date

$ git remote add upstream git@github.com:JeffersonLab/hcana.git
$ git fetch upstream
$ git merge upstream/develop
$ git push origin <my_develop_branch>

mailto:git@github.com:JeffersonLab/hcana.git

Issue Tracking in Git

- Issues to be solved can be created at any time, and assigned to a
particular developer

- When pull requests are made, can be associated with one or
more issues, and issue can be closed (if appropriate)

X

https://github.com/JeffersonLab/hcana/issues?state=open

A new build system -
SCons

• Traditionally, Hall A/C software has been built with

“make”
o Platform/system/compiler dependent configuration handled within

Makefiles (coupled with #ifdef statements within the code itself)

o Dependency checking not included by default, and is based on

timestamp.

o Having an “autoconf”-like configuration is desirable, but GNU Autoconf is

highly complex

o Makefiles are platform-dependent, and incredibly cryptic – basically

unreadable to non-experts – making changes and updates difficult

o Libtool (management of libraries) not available for all platforms

• Is there something better out there?

A new build system -
SCons

• SCons is an open-source software construction tool

o Written entirely in Python – power of a real programming language in

configuration and build scripts … plus, our students know and love Python!

o Scripts are much more readable than Makefiles

o Integrated functionality similar to Autoconf

o Built-in support for C/C++, and easily extensible for other builders (ROOTCINT)

o Built-in dependency-checking – based on MD5 signatures, and not timestamps
– important for git.

o Designed from the ground up for cross-platform builds

o Currently used by the JLab DAQ group for EVIO, and by Hall D for both online
and offline build systems.

Major Projects using
SCons

• ASCEND - A system modeling package for engineering

• Cantera – A toolkit for chemical kinetics and thermodynamics

• CLAM – A framework to develop sophisticated audio analysis

• FreeNOS – A microkernel operating system written in C++

• IntensityEngine – A platform for 3D games and virtual worlds

• Lumiera – A professional video editor

• Madagascar – Geophysical data processing

• Nsound – C++ audio synthesis framework

• openEHR – Electronic Health Record standard

• V8 – Google’s open source Javascript engine

• YafaRay – An open source raytracing engine

SCons – Current status
• Build and configuration scripts have been written, tested, and committed for both

PODD and HCANA

• Configuration checks for:
o ROOT installation

o gcc/g++ compiler installation and functionality

o Platform-dependent compiler/linking flags (64/32 bit, Linux/MacOSX)

o Integration with cppcheck and scan-build

• Currently, we are maintaining the traditional Make system and SCons in parallel (for
both PODD and HCANA)

• Capability exists for integrating HCANA and PODD under SCons with modern IDE’s
(XCode, Eclipse) … nice for students working on development!

• Future work will focus on reorganization and auto-detection of code and header
files to make new development easier.

• Presentation/tutorial planned for Hall A/C Analysis workshop in December to make
all users aware of SCons developments.

