LAD ERR

In Medium Nucleon Structure Functions, SRC, and the EMC Effect E12-11-107

Larry Weinstein, Old Dominion University

O. Hen (contact), L.B. Weinstein, E. Piasetzky, S. Wood, A. Schmidt, F. Hauenstein

This talk addresses part of Charge 1: What are the running conditions for the experiment?

DIS and the EMC Effect

 $0 < x_B = \frac{Q^2}{2m_N\omega} < 1$

 $\omega = E' - E$

EMC Scale: several GeV

Nuclear binding energy scale: several MeV

Expectation: DIS of bound nucleons ≅ DIS of a free nucleons

EMC: DIS off bound N ≠ DIS off free N

Origin of EMC effect unknown!! Nucleon modification needed. ≈10³ publications

EMC Effect: Universal

EMC Effect: Theory

- Nuclear Effects:
 - Fermi motion
 - Binding energy
- Full Calculation
 - Nucleon modification
 - Phenomenological change to bound nucleon structure functions, proportional to virtuality (p²)
 - Nuclear pions
 - Shadowing

Nucleon modification needed to describe the data

Kulagin and Petty, PRC 82, 054614 (2010) 4

EMC Effect: Theory

Nucleon modification needed to describe the data

Kulagin and Petty, PRC 82, 054614 (2010) 5

A(e,e') ratios: Universality of SRC (Scaling)

 At high nucleon momenta, strength is different but shapes of distributions are similar

 $x = Q^2/2mv$ related to the minimum struck nucleon momentum

Correlations Between EMC and SRC

Explore Connection between EMC and SRC

Testing the BIG Question:

Measure the in-medium modified(?) structure function F_2 in DIS as a function of nucleon momentum

$$\frac{d^{3}\sigma}{d\Omega dE'} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \left[\frac{1}{\omega}F_{2}(x_{B},Q^{2}) + \frac{2}{M}F_{1}(x_{B},Q^{2}) \cdot \tan^{2}\left(\frac{\theta_{e}}{2}\right)\right]$$

(F_1 and F_2 are related by R, the measured ratio of longitudinal and transverse cross sections. Thus measuring the cross section yields F_2 .)

- All nucleons modified
 - \rightarrow F_2 independent of momentum
 - → $F_2 \neq$ free F_2 (small difference for all nucleons)
- SRC nucleons modified
 - \rightarrow *F*² varies with momentum
 - → $F_2 \neq$ free F_2 (**big** difference for high-p nucleons)

Predicted Dependence of F₂ on Momentum

- > Models
- Nucleon momentum and x_B
- Nucleon momentum, not x_B

Predicted Dependence of F₂ on Momentum

Spectator Tagging

Experimental method

- (e,e') Deep Inelastic Scattering from deuterium
- Tag high-momentum neutrons with 300-700 MeV/c backwardrecoiling ("spectator") partner protons using d(e,e'p_s)

Experimental Method

d(e,e' p_s) cross section factorizes into the cross section (F_2) and the distorted momentum distribution.

Fix the recoil kinematics: \vec{p}_s or (α_s, p_T) measure x-section ratios at 2 different x':

 $\frac{d^4\sigma}{dx_1'dQ_1^2d\vec{p}_S} \Big/ \frac{d^4\sigma}{dx_2'dQ_2^2d\vec{p}_S} = (K_1/K_2) \Big[F_2^*(x_1',\alpha_S,p_T,Q_1^2) \Big/ F_2^*(x_2',\alpha_S,p_T,Q_1^2) \Big]$

For $x_{\rm hi}' \approx 0.5 - 0.6$ and $x_{\rm lo}' \approx 0.3$ we shall measure:

$$\frac{F_2^*(x_{hi}',\alpha_s,p_T,Q_1^2)}{F_2^*(x_{lo}',\alpha_s,p_T,Q_2^2)} = \left(\frac{d^4\sigma}{dx_{hi}'dQ_1^2d\vec{p}_s}/K_1\right) / \left(\frac{d^4\sigma}{dx_{lo}'dQ_2^2d\vec{p}_s}/K_2\right)$$

$$x' = \frac{Q^2}{2p_{\mu}q^{\mu}} = \frac{Q^2}{2[(M_d - E_s)\omega + \vec{p}_s \cdot \vec{q}]}$$

 $\alpha_{s} = (E_{s} - p_{s}^{z})/m_{s}$

x' is x-Bjorken for the moving struck nucleon

$$\vec{p}_s$$
 maps to (α_s, p_T)

Experimental Method (cont.)

Minimize experimental and theoretical uncertainties by measuring cross-section ratios and double ratios

$$\frac{F_{2}^{bound}(x_{high}^{'},Q_{1}^{2},\vec{p}_{s})}{F_{2}^{free}(x_{high}^{'},Q_{1}^{2})} = \frac{\sigma_{tag}(x_{high}^{'},Q_{1}^{2},\vec{p}_{s})}{\sigma_{tag}(x_{low}^{'},Q_{2}^{2},\vec{p}_{s})} \cdot \frac{\sigma_{n}^{free}(x_{lo}^{'},Q_{2}^{2})}{\sigma_{n}^{free}(x_{high}^{'},Q_{1}^{2},\vec{p}_{s})} = \frac{\sigma_{tag}(x_{hi}^{'},Q_{2}^{2},\vec{p}_{s})}{\sigma_{tag}(x_{lo}^{'},Q_{2}^{2},\vec{p}_{s})/\sigma_{d}(x_{hi}^{'},Q_{1}^{2})}$$

$$\frac{F_{2}^{bound}(x_{high}^{'},Q_{1}^{2},\vec{p}_{s})}{F_{2}^{free}(x_{high}^{'},Q_{1}^{2})} = \frac{\sigma_{tag}(x_{hi}^{'},Q_{1}^{2},\vec{p}_{s})/\sigma_{d}(x_{hi}^{'},Q_{1}^{2})}{\sigma_{tag}(x_{lo}^{'},Q_{2}^{2},\vec{p}_{s})/\sigma_{d}(x_{lo}^{'},Q_{2}^{2})}$$

$$\frac{\cdot \frac{\sigma_{d}}{\sigma_{n}}/\sigma_{n}^{free}(x_{hig}^{'},Q_{1}^{2})}{\sigma_{d}/\sigma_{n}^{free}(x_{lo}^{'},Q_{2}^{2})} \cdot R_{FSI}$$

$$x_{high}^{'} \ge 0.5$$

$$x_{high}^{'} \ge 0.35$$
No EMC Effect expected

Minimizing Final State Interactions (FSI)

FSI:

- \succ Decrease with Q^2
- ➢ Increase with W'
- \succ Not sensitive to x'_B
- Small for $\theta_{pq} > 107^{\circ}$

We shall:

- Take ratios at large recoil angles
- Involve theoretical colleagues
- > Take more data at $\theta_{pq} \sim 90^{\circ}$ (to characterize FSI)
- Take data at two x'
- > Use low x' data to study FSI dependence on Q^2 , W'^2 , θ_{pq}

CLAS6 Results: d(e,e'p_s)

Experimental Details

1 μA , 10.9 GeV beam, $L = 10^{37}\ cm^{-2}s^{-1}$

HMS and SHMS detect electrons

PRAD GEMs measure proton vertex

LAD detects recoiling proton 0.9 sr of CLAS6 TOF counters $95^{\circ} < \theta_p < 157^{\circ}$

Central kinematics

	Low x'	Hi x'
E' (GeV)	4.4	4.4
$ heta_{e}$	13.5°	-17º
Q ² (GeV ²)	2.7	4.2
$\mid ec{q} \mid$ (GeV/c)	6.7	6.8
$ heta_{q}$	-8.8°	10.8°
X	0.22	0.34

Collect both LAD-HMS and LAD-SHMS coincidences

EMC-SRC Detectors

Detectors at the different planes from Target Panels overlap reducing or eliminating gap

CLAS6 TOF → LAD

CLAS6 TOF scintillators 12 planes 138 scintillator bars - Using 5 larger planes Refurbished and tested at ODU

Tel Aviv, Kent State, MIT, JLab, ODU

Measuring protons with LAD

- Five panels of refurbished CLAS6 scintillators
 - 55 scintillators, each 3.9 to 4.4 m by 22 cm by 5-cm thick
 - $95^{\circ} < heta_p < 157^{\circ}$, $|\phi| \le 17^{\circ}$
 - 5 to 5.4 m from target
 - One panel at smaller angles, two panels each at larger angles (to identify punch-thru protons)
 - Identify protons by dE/dx vs TOF
 - Measure proton momentum using TOF
 - Laser calibration system for timing and energy calibration
 - Used successfully for BAND
- GEMS to measure proton vertex to reject accidentals
 - PRAD GEMs: 55 x 120 cm²,
 - 75 and 95 cm from target
- Trigger on electron in either HMS or SHMS (~1 kHz total rate)

Kinematic Coverage

Scattered electrons

Expected Results

Summary: Measuring Nucleon Medium Modification

Physics:

- > EMC effect strongly implies that bound nucleons are modified
- SRC and EMC are linearly correlated
- Both phenomena are likely related to high-momentum nucleons

Experiment d(e,e'p_s) with HMS/SHMS and LAD:

- Directly measure the neutron structure function in the nuclear medium as a function of momentum (virtuality)
 - Use spectator tagging to select highly virtual neutrons in DIS
 - Minimize systematic uncertainties by measuring ratios
- Complements proton s.f. measurements using d(e,e'n_s) E12-11-003B (CLAS12 and BAND) and low-momentum neutron (BoNuS)
- Are nucleons modified in the nucleus? If so, which ones?
- Can this explain the EMC effect?
- How is this related to short range correlations?