

12 GeV Software Review engine/hcana comparisons

PM Session Hall C

Gabriel Niculescu James Madison University

Hall C Fortran/Cernlib analyzer (engine) Used in the 6 GeV era 100k + LOC Hall C ROOT/C++ analyzer (hcana) Moving into the 12 GeV era Built on top of Hall A's PODD software In publicly readable git repository (github) Keep all analysis algorithms from engine
 Document analysis algorithms

- Reads Hall C style parameter files
- Reads Hall C style hardware (detector mapping)
- Builds engine-style raw hit lists
- Extracts hodoscope and drift chamber hit lists from HMS CODA files
- Hodoscope reconstruction/rest of milestones to follow

HMS hodoscope

In the engine

Same HMS hodoscope raw ADC & TDC hits

Done in hcana!

Current Status (11/25/2013)

- Work has progressed in all four detector areas:
- DC/Tracking (Steve, Mark ~75% done*)
- Cerenkov (Ahmed ~80%)
- Calorimeter (Simon, Vardan ~80%)
- Hodoscope/Trigger (GN ~80%)
 - * percentages are just my educated guess
- People working on these areas can give a better estimate
- See: <u>https://github.com/JeffersonLab/hcana</u>

Also progress in the automated histogram allocation, filling, (meta)reporting

CEBAF Test Package

Hall C Fortran based analyzer relied on text file driven CTP (CEBAF Test Package), with four major components.

- Parameters: Simple text based parameter database.
 Parameter values can be expressions.
- **4** Tests: Run time configurable cuts
- **Histograms: Run time 1d and 2d histogram definitions**
- Report Templates: Run time configurable analysis summary sheets.
- **User desire to replicate CTP functionality in C++ analyzer.**
- Existing Hall A analyzer code either provides similar features as CTP or makes it easy to code CTP features.
 - **Use existing Hall A analyzer cut and histogram packages**
 - Wrote replacements for CTP parameters and report components (SW)

emplate

Report Templates

"test scaler" = {htrig.scaler:%8d} ({htrig.scaler/g)run_time:%7.1f}) htrig (# of times hms adcgates= {gscaler(176):%8d} [{gscaler(176)/g_run_time:%7.1f }] sos adcgates= {gscaler(336):%8d} [{gscaler(336)/g_run_time:%7.1f}] Cut passed) all adcgates= { gscaler(175):%8d } [{ gscaler(175)/g_run_time:%7.1f }] * RAW SOFTWARE EFFICIENCIES * "raw" means one or more hits per dc plane. hardware scaler "Good" means one or two hits per dc plane. = {hdc events(1):%7d} eff = {hdc_plane_eff(1):%5.3f} rawhdc1x1 BAD = .95rawhdc1y1 = {hdc events(2):%7d} eff = {hdc_plane_eff(2);%5.3f} BAD = .95... htrig 98576 (13857.27) = 98188 [13802.7] hms adcgates= sos adcgates= 0 [0.0] all adcgates= 99612 [14002.9] calculated in analyzer * RAW SOFTWARE EFFICIENCIES * "raw" means one or more hits per dc plane. "Good" means one or two hits per dc plane. rawhdc1x1 83772 eff = 0.935 BAD = .95 = 84639 eff = 0.945 BAD = .95rawhdc1y1 =

ample Output

Focal plane time for all scintillator planes

Hodoscope start time

Steve Wood, Mark Jones

Reconstructed focal plane quantities (xfp, yfp, xpfp, ypfp)

Gabriel Niculescu, Hall C Software Review

Gabriel Niculescu, Hall C Software Review

Thomas Jefferson National Accelerator Facility Gabriel Niculescu, Hall C Software Review

10-`

ntegral 328

Integral

Ahmed Zahed (Regina)

"
"Started from ThcAerogel class and converted the logic of
engine/HTRACKING/h_trans_cer.f to ThcCherenkov.cxx"

hcana in blue, engine in red

Jefferson Lab

Cerenkov

 \oplus Cerenkov number of photoelectrons Most of the \oplus disparity comes from the fact that at some point in the algorithm engine truncates the npe to an integer...

80 90

hePnpe

100

heNnpe

Entries

Mean

RMS

22973

10.63

4.308

90

22973

0.3659

2.177

Entries

Mean

RMS

Calorimeter

Yerevan group (Simon, Vardan...)

Well documented algorithm

Energy deposition in the Preshower (1-st layer) for the cluster with largest energy deposition (left) and the difference between hcana and engine (right)

Energy deposition in the cluster associated to the track for single track events (left), and difference between hcana and engine (right).

Preshower energy deposition in the cluster associated to the track for single track events (left), and difference between hcana and engine (right)

- Substantial, simultaneous, sustained progress in coding all Hall C detectors.
- Good (almost perfect) engine-hcana agreement on the quantities reconstructed thus far
- Finishing up code for individual detectors should allow (near future) to move on to full track reconstruction

To Do List

- Handling of "special events" (Scalers, EPICS, etc.)
- 🕈 Beam raster
- Computing physics quantities
- Systematic review of local/global variables (so we can replicate online diagnostic histograms and fill root tree with same information as engine ntuples)
- Calibration scripts
- Setting up a viewer for online diagnostic histograms
- Continue documenting algorithms
- Enlist more testers/early adopters
- Perform extensive "stress tests" (more/longer runs, different beam conditions)

