LAD Cable and Trigger Diagrams v0.2

Florian Hauenstein 10/09/2024

LAD Readout Crate: Crate Number xx

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
CPU Board: TDCLAD?	Trigger Logic Board V1495	Disc V895	Disc V895	Disc V895	TDC 1190A or 1290	Disc V895	Disc V895	Disc V895	Disc V895		Signal Distribution Card	FADC 0x6800	FADC 0x7000	FADC 0x7800	FADC 0x8000	FADC 0x8800	FADC 0x9000	FADC 0x9800		Trigger Interface Card

1V Jumper all FADCs probably (maybe 0.5V)

Bar Coincidence Timing

- Length of bars between 387.5cm and 445.1cm in each panel
- Assuming effective velocity of 16.5 cm/ns → 24ns to 27ns difference between signals at PMTs

E.S. Smith, NIM A432, 265 (1999)

 Conclusion: Bar coincidence signal within a 30ns window

Time of Flight for Particles from Target (1)

- Wall 2 Layer 0 is symmetric to Wall 0 Layer 0 → same ToF from target
- Assume protons from 200MeV/c to 700 MeV/c to be conservative (Note: We expect a higher mimimum momentum)

Wall 1
Layer 0 (front)
Layer 1 (back)

Wall 0
Layer 0 (front)
Layer 1 (back)

Wall 2

Layer 0 (front)

ToF range from 30ns to 110ns

Time of Flight for Particles from Target (2)

- Wall 2 Layer 0 is symmetric to Wall 0 Layer 0 → same ToF from target
- Assume protons from 200MeV/c to 700 MeV/c to be conservative (Note: We expect a higher mimimum momentum)

Layer 0 (front) Wall 1 Layer 0 (front) Layer 1 (back) Wall 0 Layer 0 (front) Layer 1 (back)

Wall 2

ToF range from 26ns to 95ns

Time of Flight for Particles from Target (3)

- Wall 2 Layer 0 is symmetric to Wall 0 Layer 0 → same ToF from target
- Assume protons from 200MeV/c to 700 MeV/c to be conservative (Note: We expect a higher mimimum momentum)

- ToF between 30ns to 100ns
- Not much effect from where it hits (~5ns) since pathlength dominated by distance from target

Time of Flight for Particles from Target (4)

- Wall 2 Layer 0 is symmetric to Wall 0 Layer 0 → same ToF from target
- Assume protons from 200MeV/c to 700 MeV/c to be conservative (Note: We expect a higher mimimum momentum)
- Minimum ToF of all bars: 25ns
- Maximum ToF of all bars: 115ns

- Conclusion: Have conservative 100ns window from ToF (20 to 120ns)
- Together with bar coincidence variation -> 130ns

Might need to check also pion window

Trigger Setup for coincidence and singe arm triggers

LAD Trigger Logic

- Each bar AND of Top and Bottom
- OR of all bars for main coincidence (I dont think it needs to be more complicated)
- For laser trigger require at least 5 (or more) coincidences of top and bottom
- Todo: Finish diagrams and sent logic schema to Ben for implementation

Trigger

- Main trigger: OR from both electron single arm triggers
- Supplemental trigger
 - LAD single arm for commissioning, detector checkout
 - Coincidence OR+LAD \rightarrow might be necessary for absolute timing calibration, diagnostics during experiment if signal is in TDC/Scaler (PS = -1)
- Logic signal from LAD needs to go to counting house to feed TS and coincidence
- Questions:
 - Set timings with EDTM for everything? → Answer yes!
 - Currently, coincidence is timed on electron OR. Is that reasonable? → Answer yes!
 - What are retiming concerns? How does this work with the feedback of the trigger signals into ADCs? Answer: Each crate has some reference signal so a subtraction can be made in software via settings file

LAD Labeling (to be finalized)

- Four digit numbers for each bar
 - First Number = Wall (0,1,2)
 - Second Number = Layer (0,1)
 - Third and Fouth number = Bar in layer (0-10)

 For every PMT the label is extended by U/T and D/B corresponding to top or bottom PMT

Label = W L XX U/T D/B