Simulating Signal and Background

Axel Schmidt

Answering ERR charge 4 (expected rates) and charge 7 (simulation status)

July 29, 2020

Random background will be the limit to the final LAD precision.

Random background will be the limit to the final LAD precision.

Statistical Uncertainty:

$$\delta S/S = \frac{\sqrt{S+B}}{S}$$

Random background will be the limit to the final LAD precision.

Statistical Uncertainty:

$$\delta S/S = \frac{\sqrt{S+B}}{S}$$

Increase the luminosity by factor of F:

$$\delta S/S \longrightarrow \frac{\sqrt{FS + F^2B}}{FS} = \frac{\sqrt{S/F + B}}{S}$$

Add systematic problems with subtracting large backgrounds!

Our group has experience with large background analyses.

I. Korover et al., (CLAS) with PRL

Our group has experience with large background analyses.

Hall A BigBite + HAND

- Shneor et al., **PRL** 99 072501 (2007)
- Subedi et al., Science 320 p. 1476 (2008)
- Korover et al., **PRL** 113, 022501 (2014)

Useful kinematic variables:

 $lue{W}$: Hadronic mass given spectator momentum

$$W'^2 = (q^{\mu} + p_d^{\mu} - p_s^{\mu})^2$$

 \mathbf{z}' : Bjorken- \mathbf{x} given spectator momentum

$$x' = \frac{Q^2}{2q_{\mu}(p_d^{\mu} - p_s^{\mu})}$$

• α_s : Light cone momentum of spectator (a measure of virtuality)

$$\alpha_s = \frac{E_s - \hat{q} \cdot \vec{p}_s}{m}$$

We developed a Fast MC for quickly testing and improving our design.

Generator

- Cross section calculations by Wim Cosyn, Misak Sargsian
 - Tagged-DIS cross section (signal)
 - Inclusive *e*[−] generator (background singles)
- Same as in proposal
- TFoam class for importance sampling

Generator continued . . .

Proton singles estimated from E01-015 (BigBite at 100°).

- 16.7 MHz/sr at a luminosity of 3.8×10^{37} cm⁻²s⁻¹A⁻¹ for protons > 0.25 GeV/c
- We plan $1.2 \times 10^{37} \text{ cm}^{-2} \text{s}^{-1} A^{-1}$
- \blacksquare = 5.3 MHz/sr \longrightarrow assume isotropic 6 MHz/sr

Generator continued . . .

Proton singles estimated from E01-015 (BigBite at 100°).

- 16.7 MHz/sr at a luminosity of 3.8×10^{37} cm⁻²s⁻¹A⁻¹ for protons > 0.25 GeV/c
- We plan $1.2 \times 10^{37} \text{ cm}^{-2} \text{s}^{-1} A^{-1}$
- \blacksquare = 5.3 MHz/sr \longrightarrow assume isotropic 6 MHz/sr

This is more than 50% higher background rate than Geant4 results from P. Degtiarenko.

We assume 6 MHz/sr isotropic. Pavel found 4 MHz/sr at 90°.

This is more than 50% higher background rate than Geant4 results from P. Degtiarenko.

We assume 6 MHz/sr isotropic. Pavel found 4 MHz/sr at 90°.

Propagation

- Window apertures
- Detector acceptances
- Multiple scattering from windows, GEMs, other material

Digitization and Reconstruction

- Detector Resolution
 - GEM resolution: 100 μ m
 - LAD resolution: 300 ps
- Reconstruction
 - Momentum from velocity
 - Path-length
 - Time-of-flight

Background reduction: Momentum vs. dE/dx

Background reduction: GEM vertexing

Event Selection

- \bullet in spec. + proton at LAD
- $Q^2 > 2 \text{ GeV}^2/c^2$
- W' > 2 GeV

- $\theta_{qs} > 110^{\circ}$
- $p_s > 275 \text{ MeV}$
- \blacksquare 2 σ cuts on E_{dep} , vertex

Event Selection

Event Selection

Expected yields

Expected reach

Summary

- Fast MC developed for rapid optimization
- Background reduction from
 - Energy deposition
 - Vertexing
- Expected 250k low-x' events, 70k high-x' events at 1.2×10^{37} cm⁻²s⁻¹ A^{-1} .
- Accidental background rate is 4–8x signal

ERR Charges

Charge 4: What are the expected data rates for the experiment (both physics data rate and background rates)?

Configuration	Physics (counts/hr)	Background (counts/hr)
LAD + HMS 13.5°	578	2,730
LAD $+$ SHMS 13.5°	889	3,730
$LAD + HMS 17^{\circ}$	96.9	899
LAD + SHMS 17°	114	811

Charge 7: What is the simulation ... status for the experiment?...

We have developed a fast MC for rapidly evaluating different configurations.