

R-SIDIS Analysis

February 17, 2025

Topics:

- 1. Github stuff
- 2. SIMC overview
- 3. Setting up input files and running
- 4. Single arm MC overview
- 5. Input files and running

Getting SIMC and mc-single-arm from Github

- R-SIDIS wiki:
 - <u>https://hallcweb.jlab.org/wiki/index.php?title=R-SIDIS</u>
- SIMC:
 - <u>https://hallcweb.jlab.org/wiki/index.php?title=Setting_up_SIMC</u>
- mc-single-arm:
 - <u>https://hallcweb.jlab.org/wiki/index.php?title=Mc-single-arm_(R-SIDIS_version)</u>

SIMC Overview

- More details in talk from NPS collaboration meeting:
 - <u>https://indico.jlab.org/event/866/contributions/14917/subcontributions/228/</u> <u>attachments/11515/17826/simc_nps.pdf</u>
- Excerpts follow

What is SIMC?

SIMC is the standard Hall C Monte Carlo for coincidence reactions (similar to MCEEP) \rightarrow written in FORTRAN (now gfortran compatible ...)

Features:

son Lab

- → Optics (COSY) and "aperture checking" Monte Carlos of spectrometers [HMS, SOS, SHMS, HRS's, BigCal,...]
- \rightarrow Includes radiative effects, multiple scattering, ionization energy loss, particle decay
- \rightarrow Simple prescriptions available for FSIs, Coulomb Corrections, etc.

Reactions implemented:

- 1. Elastic and quasielastic \rightarrow H(e,e'p), A(e,e'p)
- 2. Exclusive pion production
 - → H(e,e' π^+)n, A(e,e' $\pi^{+/-}$) [quasifree or coherent]
- 3. Kaon electroproduction \rightarrow H(e,e'K⁺) Λ , Σ , A(e,e'K^{+/-})
- 4. H(e,e' $\pi^{+/-}$)X, D(e,e' $\pi^{+/-}$)X [semi-inclusive]
- 5. H(e,e'K^{+/-})X, D(e,e'K^{+/-})X [semi-inclusive]

7. $H(e,e'\pi^0)p$, $D(e,e'\pi^0)p/n$, $(e,e'\pi^0)X$

6. H(e,e' $\rho \rightarrow \pi^+\pi^-$)p, D(e,e' $\rho \rightarrow \pi^+\pi^-$) [diffractive ρ]

Peter's updates underway

4

What SIMC is NOT...

SIMC is NOT a full detector response simulation a la GEANT

SIMC does NOT simulate a large class of processes simultaneously to generate backgrounds (like Pythia for example)

SIMC is not a generic event generator \rightarrow processes are generated over a limited phase space with the specific purpose of being "thrown" into a spectrometer

SIMC is not hard to modify \rightarrow if you want it to do something else (different cross section model, add new spectrometer, etc.) it is pretty easy to update + I can help

SIMC program flow

- Initialization
 - Choose reaction, final state (if appropriate)
 - Disable/enable implementation of (or correction for) raster, eloss ...
- Event generation
 - Select vertex based on target size, position, raster size, beam spot size
 - Determine energy, angle generation that will populate 100% of the acceptance (accounting for radiation, energy loss, ...)
- Physics Processes
 - Event-by-event multiple scattering, radiative corrections, particle decay, coulomb corrections
- Acceptance
 - Can apply geometric cuts or spectrometer model. Default spec. models include target/spec. offsets, model of magnetic elements, apertures at front, back, middle of magnets, collimators, detector active area
- Event Reconstruction
 - Tracks are fitted in the focal plane and reconstructed to the target. Apply (average) energy loss, fast raster corrections. Calculate physics quantities for Ntuple/Root tree

Simulating SIDIS Process

- Kinematics: SIDIS18 settings from last week's discussion
 - $Q^2=3.9 \text{ GeV}^2$, x_B=0.45, z=0.5, LH2
 - Ebeam=10.6 GeV
 - Electrons (HMS): P=5.898 GeV, theta=14.24 deg.
 - Pions (SHMS): P=2.304 GeV, theta=17.04 GeV
- See input file here:
 - /group/c-rsidis/gaskelld/simc_gfortran/infiles/sidis18_q23p9_x0p45_z0p5_pip_lh2.inp

Make some plots and get some yields

O Mate Terminal	0
File Edit View Search Terminal Help	
[gaskelld@ifarm2402 simc_gfortran]\$ root worksim/sidis18_q23p9_x0p45_z0p5_pip_lh2.root	
Welcome to ROOT 6.30/04 (c) 1995-2024, The ROOT Team; conception: R. Brun, F. Rademakers Built for linuxx8664gcc on Jun 17 2024, 14:01:44 From heads/master@tags/v6-30-04 With g++ (GCC) 11.4.0 Try '.help'/'.?', '.demo', '.license', '.credits', '.quit'/'.q'	
<pre>root [0] Attaching file worksim/sidis18_q23p9_x0p45_z0p5_pip_lh2.root as _file0 (TFile *) 0x24c32f0 root [1] TCut icut="abs(hsdelta)<8 & ssdelta>-10 & ssdelta<20" (TCut &) Name: CUT Title: abs(hsdelta)<8 & ssdelta>-10 & ssdelta<20 root [2] h10->Draw("z",(icut)*"Weight*0.116698E+12/10000") Info in <tcanvas::makedefcanvas>: created default TCanvas with name c1 (long long) 4784 root [3] htemp->Integral() (double) 338.19834 root [4]</tcanvas::makedefcanvas></pre>	

Get normalized yield by applying "Weight" from tree

 \rightarrow Includes cross section, radiative corrections, small jacobian

 \rightarrow Also need "normfac" (0.116698E+12)

Lab

- → Found in: outfiles/sidis18_q23p9_x0p45_pip_lh2.hist file
- → Includes target thickness, simulated charge, generation volume

→ Also need to divide by number of events in tree

Result from this simulation (with these cuts) was: Yield = 338.2 counts/mC

π + from Exclusive, Δ , and ρ^0 production

- Each process needs to be simulated separately
- Example input files in /group/c-rsidis/gaskelld/simc_gfortran/infiles
 - Exclusive π +, H(e,e' π +)n: exclusive_q23p9_x0p45_z0p5_pip_lh2.inp
 - Delta, H(e,e' π +) Δ^0 : delta_q23p9_x0p45_z0p5_pip_lh2.inp
 - ρ^0 production, H(e,e' $\rho^0 \rightarrow \pi + \pi -$)p: rho_q23p9_x0p45_z0p5_pip_lh2.inp

mc-single-arm

- Single are Monte Carlo works very differently than SIMC
 - No cross-section model or radiative corrections built in just simulation of spectrometer phase space and acceptance
 - Includes multiple scattering nothing else
- Typically, Monte Carlo yield requires combining events from mc-single-arm with radiative corrections (written to table) from separate, stand-along program
- Made new branch of mc-single-arm (rctables)
 - Reads in RC tables from "rctables" directory → needs to be generated ahead of time
 - Specify filename and number of momentum and angle entries in input file

mc-single-arm example from XEM2

Example from XEM2 run period Ebeam=10.55 GeV HMS: theta=20.0 deg, P=3.40 GeV LH2

O Mate Terminal	$\odot \odot $								
File Edit View Search Terminal Help									
<pre>*Entries : 244933 : Total Size= 1963877 bytes File Size = 1238095 * *Baskets : 41 : Basket Size= 1311744 bytes Compression= 1.06 * * [gaskelld@ifarm2402 mc-single-arm]\$ root worksim/hms_20deg_3p40gev_hyd_XEM.root</pre>	*								
Welcome to R00T 6.30/04 https://root.cern (c) 1995-2024, The R00T Team; conception: R. Brun, F. Rademakers Built for linuxx8664gcc on Jun 17 2024, 14:01:44 From heads/master@tags/v6-30-04 With g++ (GCC) 11.4.0 Try '.help'/'.?', '.demo', '.license', '.credits', '.quit'/'.q'									
<pre>root [0] Attaching file worksim/hms_20deg_3p40gev_hyd_XEM.root as _file0 (TFile *) 0x2e6b100 root [1] TCut icut="abs(hsdelta)<8" (TCut &) Name: CUT Title: abs(hsdelta)<8 root [2] h10->Draw("xb",(icut)*"weight*47.0056") Info in <tcanvas::makedefcanvas>: created default TCanvas with name c1 (long long) 197881 root [3] htemp->Integral() (double) 31626.440 root [4]</tcanvas::makedefcanvas></pre>									

"normfac" in outfiles/hms_20deg_3p40gev_hyd_XEM.out

Added single-arm data/dummy/report files to example output directory for comparisons

Things to try/work on

- Determine total background (exclusive, delta, rho) for pi+
 - Contribution from each channel
 - Plots vs. pion momentum or missing mass
- Simulate SIDIS pi- yield for same setting
 - Determine total background (hint: no exclusive contribution for pi- from proton)
- Estimate SIDIS rates for one of the R-SIDIS settings compare to Peter's estimates (see following slides)
- Compare yield from mc-single-arm to inclusive data (runs 4919 and 4920)

Draft R-SIDIS Run plan – pi+

e = beam energy (GeV)
wpsq is double arm missing mass squared (GeV**2)
eps is epsilon
ep = HMS momentum (GeV)
the = HMS angle in degrees.
thpq = angle between pion and q-vector.
thpi = SHMS angle in degrees.
ppi is SHMS momentum in GeV
cur is current in muA
crate is coincidence rate in kilo-counts/hour
a/r is predicted accidental/real ratio
hrs is nominal PAC hours
counts is total number of coincidences in kilo-counts
3/4 is single particle rate in SHMS in kHz

https://hallcweb.jlab.org/elogs/R-SIDIS+Experiment/4

ep the thpq thpi hrs counts 3/4 q2 z wpsq eps ppi cur crate a/r 6.5 0.16 1.6 0.50 4.9 0.32 1.2 26.5 5. 0.7 6.5 35. 900. 2.0 7.5 2.7 11.8 8.6 0.16 1.6 0.50 4.9 0.65 3.3 13.7 2.0 10.1 90. 0.6 2.0 179. 900. 2.7 16.6 0.7 8.3 27. 900. 6.5 0.22 2.2 0.50 4.6 0.31 1.1 31.6 2.0 3. 8.2 2.8 14.9 8.6 0.22 2.2 0.50 4.6 0.64 3.3 16.1 2.0 11.4 24.5 66. 0.6 2.0 133. 900. 2.8 2. 17. 900. 8.6 0.25 3.3 0.36 7.0 0.32 1.6 28.7 2.0 7.9 2.6 8.4 0.6 10.0 10.7 0.25 3.3 0.36 7.0 0.59 3.7 16.7 2.0 10.3 2.6 12.5 20. 0.5 3.4 67. 900. 35. 900. 8.6 0.25 3.3 0.50 5.6 0.32 1.6 28.7 2.0 7.9 3.6 19.9 6. 0.4 6.4 10.7 0.25 3.3 0.50 5.6 0.59 3.7 16.7 145. 878. 2.0 10.3 3.6 34.0 72. 0.4 2.0 0.2 4.5 8.6 0.25 3.3 0.67 3.8 0.32 1.6 28.7 2.0 4.9 42.0 11. 50. 518. 7.9 10.7 0.25 3.3 0.67 3.8 0.59 3.7 16.7 2.0 10.3 4.9 34.0 68. 0.1 2.0 137. 201. 8.6 0.25 3.3 0.50 5.4 0.32 1.6 28.7 5.2 11.1 3.6 42.0 7. 0.3 5.5 41. 568. 10.7 0.25 3.3 0.50 5.4 0.59 3.7 16.7 5.2 13.5 3.6 34.0 46. 0.1 2.2 102. 248. 0.2 8.2 27. 149. 8.6 0.25 3.3 0.50 5.0 0.32 1.6 28.7 8.5 14.4 3.6 42.0 3. 10.7 0.25 3.3 0.50 5.0 0.59 3.7 16.7 8.5 16.8 21. 0.1 3.3 68. 62. 3.6 34.0 8. 37. 8.6 0.25 3.3 0.50 4.5 0.32 1.6 28.7 11.7 17.6 3.6 42.0 1. 0.2 10.0 5. 0.1 6.7 34. 15. 10.7 0.25 3.3 0.50 4.5 0.59 3.7 16.7 11.7 20.0 3.6 34.0 29. 2.8 900. 10.7 0.25 3.3 0.50 5.6 0.59 3.7 16.7 -0.8 7.5 3.6 12.4 0.4 81. 10.7 0.25 3.3 0.67 3.9 0.59 3.7 16.7 -0.8 4.9 34.0 78. 0.3 157. 865. 2.0 7.5 19. 900. 6.5 0.31 3.1 0.50 4.1 0.30 1.1 37.7 2.0 9.2 2.8 20.1 2. 0.6 10.0 8.6 0.31 3.1 0.50 4.1 0.63 3.3 19.2 2.0 13.0 2.8 40.8 48. 0.6 2.2 104. 900. 10.7 0.31 3.1 0.50 4.1 0.78 5.4 13.4 2.0 14.7 2.8 34.0 150. 0.3 2.0 300. 561. 203. 900. -1.0 11.7 2.8 22.3 101. 0.6 2.0 10.7 0.31 3.1 0.50 4.1 0.78 5.4 13.4 6.5 0.44 4.4 0.40 4.0 0.28 1.2 44.7 2.0 10.3 2.3 14.8 0. 0.7 10.0 4. 900. 0.6 4.7 48. 900. 8.6 0.44 4.4 0.40 4.0 0.62 3.3 22.8 2.0 14.8 2.3 31.8 10. 0.5 2.3 96. 697. 10.7 0.44 4.4 0.40 4.0 0.77 5.4 15.9 2.0 16.9 2.3 34.0 41. 0.6 10.0 11. 900. 6.5 0.44 4.4 0.52 3.2 0.28 1.2 44.7 2.0 10.3 1. 3.0 33.8 8.6 0.44 4.4 0.52 3.2 0.62 3.3 22.8 2.0 14.8 16. 0.2 3.7 60. 404. 3.0 42.0 49. 0.1 2.1 105. 212. 10.7 0.44 4.4 0.52 3.2 0.77 5.4 15.9 2.0 16.9 3.0 34.0 6.5 0.44 4.4 0.67 2.3 0.28 1.2 44.7 2.0 10.3 2. 0.3 10.0 18. 434. 3.8 56.0 8.6 0.44 4.4 0.67 2.3 0.62 3.3 22.8 2.0 14.8 3.8 42.0 16. 0.0 3.7 60. 87. 10.7 0.44 4.4 0.67 2.3 0.77 5.4 15.9 2.0 16.9 49. 0.0 2.1 105. 40. 3.8 34.0 20. 3.3 67. 900. 10.7 0.44 4.4 0.40 4.0 0.77 5.4 15.9 -2.0 12.9 2.3 16.8 0.7 2.6 2.3 27.0 34. 0.6 87. 900. 10.7 0.44 4.4 0.40 4.0 0.77 5.4 15.9 0.0 14.9 34.0 53. 0.2 2.1 109. 413. 10.7 0.44 4.4 0.52 3.2 0.77 5.4 15.9 0.0 14.9 3.0 10.7 0.44 4.4 0.52 3.2 0.77 5.4 15.9 -2.0 12.9 3.0 34.0 49. 0.5 2.1 105. 786. 10.7 0.44 4.4 0.67 2.3 0.77 5.4 15.9 0.0 14.9 3.8 34.0 54. 0.0 2.0 110. 99. 49. 0.1 105. 239. 10.7 0.44 4.4 0.67 2.3 0.77 5.4 15.9 -2.0 12.9 3.8 34.0 2.1 all 3-pass 4-pass 5-pass total time pi+(day)=8.439 2.286 2.622 2.055

Draft R-SIDIS Run plan – pi-

е	Х	q2	z١	vpsq	eps	ер	the 1	thpq	thpi	ppi	cur d	crate	a/r	hrs co	unts	3/4
6.5	0.16	1.6	0.50	4.9	0.32	1.2	26.5	2.0	7.5	2.7	22.8	4.	1.8	7.2	31.	900.
8.6	0.16	1.6	0.50	4.9	0.65	3.3	13.7	2.0	10.1	2.7	34.9	81.	2.0	2.0	162.	900.
6.5	0.22	2.2	0.50	4.6	0.31	1.1	31.6	2.0	8.2	2.8	29.3	3.	1.8	9.1	25.	900.
8.6	0.22	2.2	0.50	4.6	0.64	3.3	16.1	2.0	11.4	2.8	42.0	49.	1.5	2.1	105.	710.
8.6	0.25	3.3	0.36	7.0	0.32	1.6	28.7	2.0	7.9	2.6	16.9	2.	1.3	10.0	18.	900.
10.7	0.25	3.3	0.36	7.0	0.59	3.7	16.7	2.0	10.3	2.6	25.8	21.	1.4	3.2	69.	900.
8.6	0.25	3.3	0.50	5.6	0.32	1.6	28.7	2.0	7.9	3.6	37.0	4.	1.1	7.1	31.	900.
10.7	0.25	3.3	0.50	5.6	0.59	3.7	16.7	2.0	10.3	3.6	34.0	31.	0.6	2.7	84.	438.
8.6	0.25	3.3	0.67	3.8	0.32	1.6	28.7	2.0	7.9	4.9	42.0	4.	0.4	7.7	29.	451.
10.7	0.25	3.3	0.67	3.8	0.59	3.7	16.7	2.0	10.3	4.9	34.0	24.	0.2	3.1	73.	123.
8.6	0.25	3.3	0.50	5.4	0.32	1.6	28.7	5.2	11.1	3.6	42.0	3.	0.5	8.4	27.	285.
10.7	0.25	3.3	0.50	5.4	0.59	3.7	16.7	5.2	13.5	3.6	34.0	20.	0.2	3.4	67.	116.
8.6	0.25	3.3	0.50	5.0	0.32	1.6	28.7	8.5	14.4	3.6	42.0	1.	0.3	10.0	15.	72.
10.7	0.25	3.3	0.50	5.0	0.59	3.7	16.7	8.5	16.8	3.6	34.0	9.	0.1	5.0	45.	27.
8.6	0.25	3.3	0.50	4.5	0.32	1.6	28.7	11.7	17.6	3.6	42.0	0.	0.2	10.0	4.	18.
10.7	0.25	3.3	0.50	4.5	0.59	3.7	16.7	11.7	20.0	3.6	34.0	2.	0.1	10.0	22.	6.
10.7	0.25	3.3	0.50	5.6	0.59	3.7	16.7	-0.8	7.5	3.6	23.4	23.	1.1	3.1	73.	900.
10.7	0.25	3.3	0.67	3.9	0.59	3.7	16.7	-0.8	7.5	4.9	34.0	27.	0.6	2.9	78.	523.
6.5	0.31	3.1	0.50	4.1	0.30	1.1	37.7	2.0	9.2	2.8	40.4	2.	1.7	10.0	16.	900.
8.6	0.31	3.1	0.50	4.1	0.63	3.3	19.2	2.0	13.0	2.8	42.0	21.	0.9	3.3	69.	409.
10.7	0.31	3.1	0.50	4.1	0.78	5.4	13.4	2.0	14.7	2.8	34.0	64.	0.5	2.0	129.	243.
10.7	0.31	3.1	0.50	4.1	0.78	5.4	13.4	-1.0	11.7	2.8	34.0	66.	1.3	2.0	132.	643.
6.5	0.44	4.4	0.40	4.0	0.28	1.2	44.7	2.0	10.3	2.3	32.6	0.	2.0	10.0	4.	900.
8.6	0.44	4.4	0.40	4.0	0.62	3.3	22.8	2.0	14.8	2.3	42.0	7.	1.1	5.8	39.	494.
10.7	0.44	4.4	0.40	4.0	0.77	5.4	15.9	2.0	16.9	2.3	34.0	20.	0.6	3.3	67.	281.
6.5	0.44	4.4	0.52	3.2	0.28	1.2	44.7	2.0	10.3	3.0	56.0	1.	1.4	10.0	8.	744.
8.6	0.44	4.4	0.52	3.2	0.62	3.3	22.8	2.0	14.8	3.0	42.0	7.	0.4	5.8	39.	172.
10.7	0.44	4.4	0.52	3.2	0.77	5.4	15.9	2.0	16.9	3.0	34.0	21.	0.2	3.3	68.	86.
6.5	0.44	4.4	0.67	2.3	0.28	1.2	44.7	2.0	10.3	3.8	56.0	1.	0.4	10.0	6.	370.
8.6	0.44	4.4	0.67	2.3	0.62	3.3	22.8	2.0	14.8	3.8	42.0	6.	0.1	6.3	36.	46.
10.7	0.44	4.4	0.67	2.3	0.77	5.4	15.9	2.0	16.9	3.8	34.0	17.	0.0	3.6	62.	18.
10.7	0.44	4.4	0.40	4.0	0.77	5.4	15.9	-2.0	12.9	2.3	34.0	20.	1.8	3.3	67.	822.
10.7	0.44	4.4	0.40	4.0	0.77	5.4	15.9	0.0	14.9	2.3	34.0	21.	1.0	3.3	69.	485.
10.7	0.44	4.4	0.52	3.2	0.77	5.4	15.9	0.0	14.9	3.0	34.0	22.	0.4	3.2	70.	178.
10.7	0.44	4.4	0.52	3.2	0.77	5.4	15.9	-2.0	12.9	3.0	34.0	21.	0.8	3.3	68.	360.
10.7	0.44	4.4	0.67	2.3	0.77	5.4	15.9	0.0	14.9	3.8	34.0	19.	0.1	3.5	65.	46.
10.7	0.44	4.4	0.67	2.3	0.77	5.4	15.9	-2.0	12.9	3.8	34.0	17.	0.3	3.6	62.	115.
tota	l time	e pi-	- (day	y)=	8.43	39	2.343	3 3	.269	2.82	27					
					all		3-pas	SS	4–pass	s 5-p	oass					

