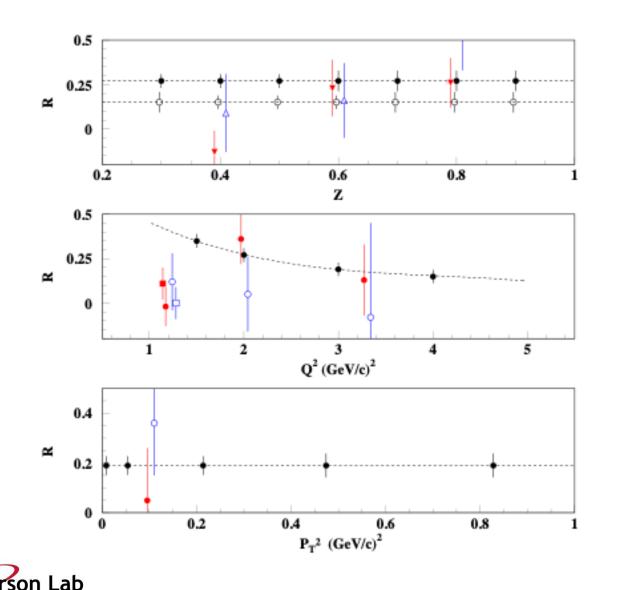


"Beam in 30 minutes or it's free"


February 3, 2025

Topics:

- 1. Analysis goals
- 2. Rosenbluth Separations
- 3. Extraction of cross sections
- 4. Other stuff

R-SIDIS Measurement Goals

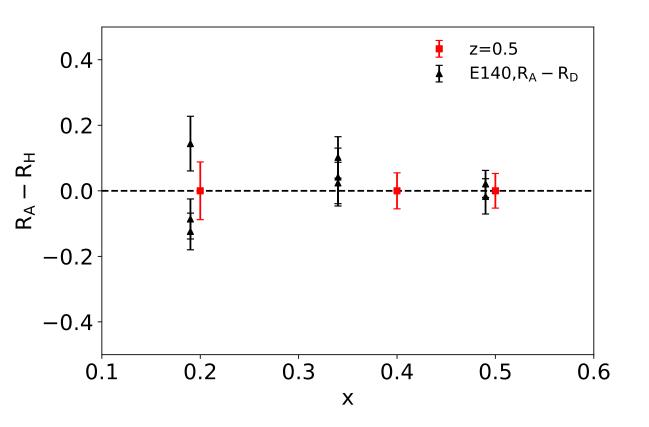
Extract $R = \sigma_L / \sigma_T$ in SIDIS \rightarrow charged pions and kaons \rightarrow H and D targets

Measure as a function of x/Q², z, and P_T

Compare R in SIDIS to DIS Key questions:

- How does R transition from low z to exclusive limit (z=1)?
- 2. Is R the same for pions and kaons?
- 3. What is the P_T dependence?

2


R-SIDIS Measurement Goals

Extract nuclear dependence of R_{SIDIS}

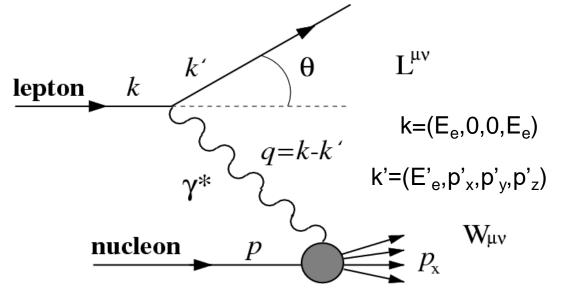
- → Approved experiment to measure nuclear dependence of R in inclusive DIS – related to EMC effect, anti-shadowing, etc.
- → Nuclear dependence of R_{SIDIS} important for interpretation of hadron attenuation measurements, dilution extraction for polarized target experiments, possible interesting new physics

Exploratory measurement $\rightarrow x/Q^2$ dependence, z dependence, P_T dependence at subset of proton/deuteron measurements

SLAC E140: Nuclear Dependence of R in DIS
 E12-24-001: Nuclear Dependence of R in SIDIS (projected precision)

Inclusive Electron Scattering cross section and kinematics

 $\frac{d\sigma}{d\Omega dE'} = \frac{4\alpha^2 (E')^2}{Q^4} \left[W_2(\nu, Q^2) \cos^2 \frac{\theta}{2} + 2W_1(\nu, Q^2) \sin^2 \frac{\theta}{2} \right] \qquad \frac{MW_1(n, Q^2) \ \mathbb{R} \ F_1(x)}{nW_2(n, Q^2) \ \mathbb{R} \ F_2(x)} \qquad F_2(x) = \sum_i e_i^2 x q_i(x)$


 $Q^2 = -(\text{four-momentum transferred to struck nucleon})^2 = 4E_e E'_e \sin^2 \frac{\theta_e}{\Omega}$

 $\nu = E_e - E'_e$

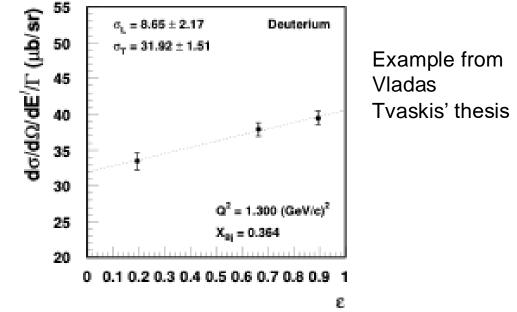
W²=total energy of virtual-photon + target in CM frame

$$= \nu^2 + M^2 + 2M\nu \ \ \text{-}\ \text{q}^2$$

 $x = \frac{Q^2}{2Mu}$ Bjorken scaling variable \Rightarrow Fraction of nucleon momentum carried by struck quark

(Inclusive) Rosenbluth (L-T) Separations

Inclusive cross section can be re-written:

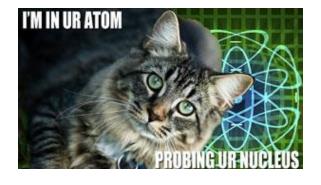

$$\frac{d\sigma}{d\Omega dE} = \Gamma \left[\sigma_T(\nu, Q^2) + \epsilon \sigma_L(\nu, Q^2) \right]$$

$$\Gamma = \frac{\alpha}{2\pi^2} \frac{E'_e}{E_e} \frac{1}{Q^2} \frac{1}{1-\epsilon} K_{eq} \qquad K_{eq} = \frac{W^2 - M^2}{2M} \qquad \epsilon = \left[1 + 2\left(1 + \frac{Q^2}{4M^2x^2}\right) \tan^2\frac{\theta}{2}\right]^{-1}$$

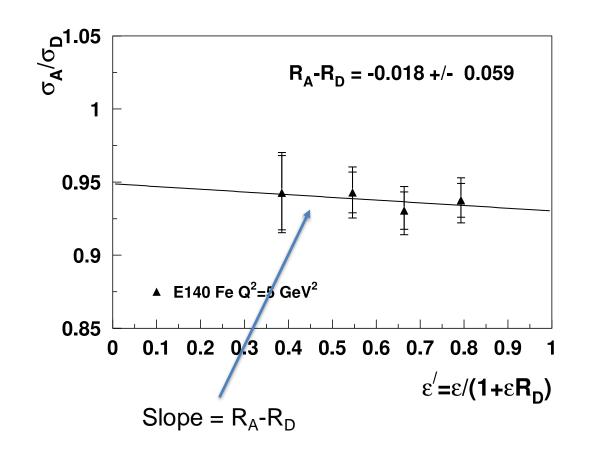
Plot cross section at fixed v (or x) and Q² \rightarrow Plot vs. ε and fit line

 \rightarrow Slope = σ_L , intercept σ_T

Vary ϵ by making measurements at different beam energies (scattered electron momentum and angle will also change to keep x and Q² fixed)



Nuclear Dependence of $R = \sigma_L / \sigma_T$

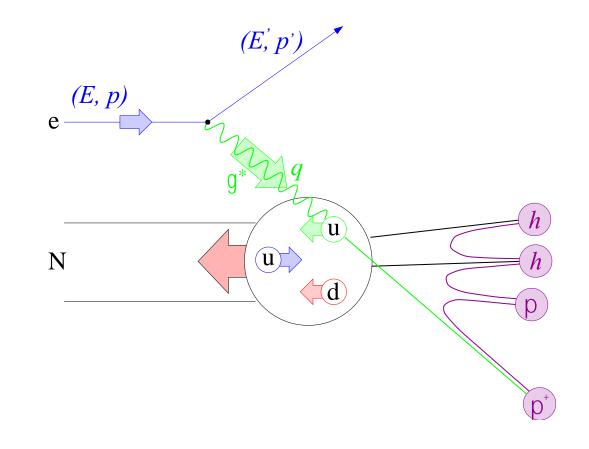

Nuclear dependence of R can be extracted by looking epsilon dependence of target ratios

$$\frac{\sigma_A}{\sigma_H} = \frac{\sigma_A^T}{\sigma_H^T} [1 + \epsilon' (R_A - R_H)]$$
$$\epsilon' = \epsilon / (1 + \epsilon R_H)$$

Jefferson Lab

Example: R_A-R_D from SLAC E140 (inclusive DIS)

6


Semi-inclusive DIS

SIDIS \rightarrow production of one or more hadrons in DIS reaction

Simple picture:

1. Electron scatters from quark in nucleon 2. Quark is kicked out \rightarrow subsequently hadronizes, ending up in bound state

In this simple picture, SIDIS can be used to "tag" the flavor of the struck quark in DIS process

$$d\sigma^h \propto \sum f^{H
ightarrow q}(x) \mathrm{d}\sigma_q(y) D^{q
ightarrow h}(z)$$

Jefferson Lab

Fragmentation function

Semi-inclusive DIS

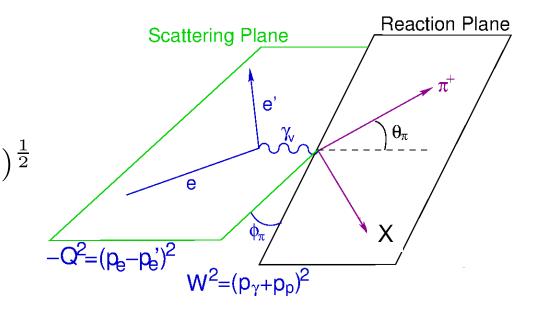
In principle SIDIS can also be used to gain information about spatial distributions of quar in nucleons

→ This requires measurements/observation c transverse degrees of freedom

DIS can also be used to gain
bout spatial distributions of quarks
es measurements/observation of
agrees of freedom
$$d\sigma^{h} \propto \sum f^{H \to q}(x) d\sigma_{q}(y) D^{q \to h}(z)$$
$$\downarrow$$
$$d\sigma^{h} \propto \sum f^{H \to q}(x, k_{T}) \otimes d\sigma_{q}(y) \otimes D^{q \to h}(z, p_{\perp})$$

SIDIS Cross Section(s)

Unpolarized cross section \rightarrow requires 3 more degrees of freedom


$$\frac{d\sigma}{dE_e d\Omega_e dP_\pi d\Omega_\pi} = \Gamma \left[\frac{d\sigma_T}{dP_\pi d\Omega_\pi} + \epsilon \frac{d\sigma_L}{dP_\pi} d\Omega_\pi + \sqrt{2\epsilon(1+\epsilon)} \frac{d\sigma_{LT}}{dP_\pi d\Omega_\pi} \cos\phi + \epsilon \frac{d\sigma_{TT}}{dP_\pi d\Omega_\pi} \cos 2\phi \right]$$
$$\frac{d\sigma}{dx dy dz dp_T^2 d\phi} = \frac{\alpha^2}{xyQ^2} \frac{y^2}{2(1-\epsilon)} \left[F_T + \epsilon F_L + \sqrt{2\epsilon(1+\epsilon)} \cos\phi F_{LT} + \epsilon \cos 2\phi F_{TT} \right]$$

Inclusive: structure functions depend just on x and Q^2 SIDIS: structure functions depend on x,Q², z, and P_T

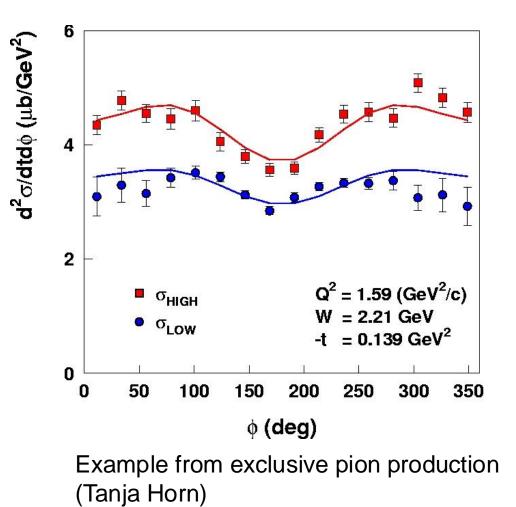
$$z = \frac{q \cdot p}{q \cdot P} = \frac{E_h}{\nu} \qquad p_{\parallel} = \frac{p \cdot q}{|q|} \qquad p_T = (p^2 - p_{\parallel}^2)$$

$$\cos \phi = \frac{(-\vec{q} \times \vec{k}) \cdot (-\vec{q} \times \vec{p_h})}{|\vec{q} \times \vec{k}| |\vec{q} \times \vec{p_h}|}$$

Jeff

Rosenbluth separations for SIDIS

$$\frac{d\sigma}{dE_e d\Omega_e dP_\pi d\Omega_\pi} = \Gamma \left[\frac{d\sigma_T}{dP_\pi d\Omega_\pi} + \epsilon \frac{d\sigma_L}{dP_\pi} d\Omega_\pi + \sqrt{2\epsilon(1+\epsilon)} \frac{d\sigma_{LT}}{dP_\pi d\Omega_\pi} \cos\phi + \epsilon \frac{d\sigma_{TT}}{dP_\pi d\Omega_\pi} \cos 2\phi \right]$$


L-T separation for meson production more complicated due to phi dependent terms

We're most interested in σ_{L} and σ_{T}

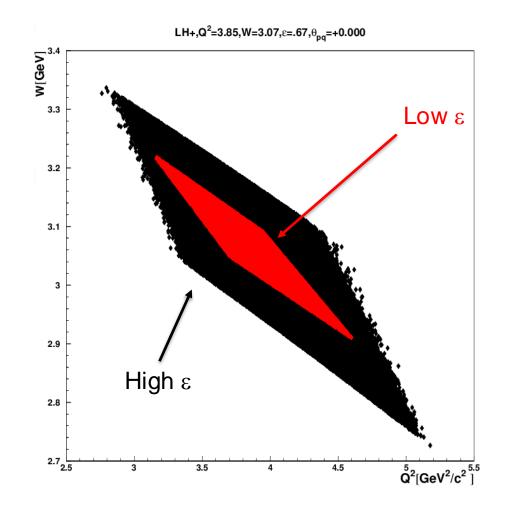
Need to extract cross section at fixed x, Q², z, and P_T vs. ϕ at each beam energy (ϵ)

Two options:

- 1. Integrate over ϕ at each $\varepsilon \rightarrow$ cross section reduces to $\sigma_L + \varepsilon \sigma_T$
- 2. Do multiparameter fit over all ε settings \rightarrow extract L, T, LT, TT terms simultaneously

Phase Space at high and low epsilon

Complication in L-T separations due to finite acceptance of spectrometers

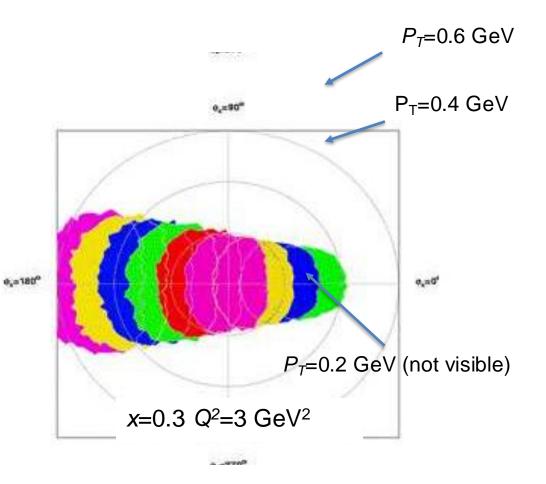

→ Electron phase space (x,Q²) or (W,Q²)

Need to perform L-T separation at same x and Q²

→ Integrating over different regions can results in different effective x and Q²

2 options:

- Add so-called "diamond cuts" to acceptance → force x/Q² at coverage low and high ε to be the same
 - Results in reduced statistics for high ϵ data (or longer run times)
- "Bin-center" over full x/Q²
 - Bin-centering at some level is required anyway
 - Can result in larger systematic uncertainties

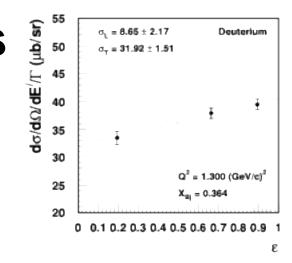

P_T range and ϕ dependence

$$\frac{d\sigma}{dE_e d\Omega_e dP_\pi d\Omega_\pi} = \Gamma \left[\frac{d\sigma_T}{dP_\pi d\Omega_\pi} + \epsilon \frac{d\sigma_L}{dP_\pi} d\Omega_\pi + \sqrt{2\epsilon(1+\epsilon)} \frac{d\sigma_{LT}}{dP_\pi d\Omega_\pi} \cos\phi + \epsilon \frac{d\sigma_{TT}}{dP_\pi d\Omega_\pi} \cos 2\phi \right]$$

The P_T range over which we can unambiguously extract σ_L and σ_T is limited by the spectrometer acceptance

→Can move the spectrometer left and right of the q-vector direction to cover $\phi=0$ and 180 degrees

→ Out-of-plane acceptance limits PT range near ϕ =90 and 270 degrees


Systematic Uncertainties

In general – there are 2 classes of systematic uncertainties

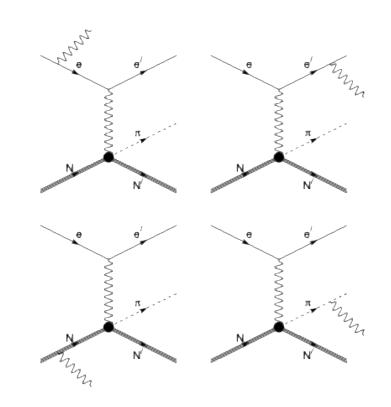
- Scale or normalization type systematic uncertainties
 - These uncertainties are in general independent of time and running condition
 - Example: target length → this will stay the same throughout run (unless damaged)
- Point-to-point or random systematic uncertainties
 - These uncertainties can vary with time, beam energy, spectrometer setting, etc.
 - Examples: acceptance (same region not populated at high and low epsilon) tracking efficiency (rate dependendent)

Point-to-point uncertainties are the most crucial to control

- Added in quadrature with statistical uncertainty at each epsilon
 → direct impact on slope, intercept
- Scale uncertainties will cancel when forming $\sigma_{\text{L}}/\sigma_{\text{T}}$ ratio

	Type of systematic uncertainty		
	pt-to-pt	t-correlated	scale
Source	(%)	(%)	(%)
Acceptance	0.4	0.4	1.0
Target Thickness		0.2	0.8
Beam Charge		0.2	0.5
HMS+SHMS Tracking	0.1	0.1	1.5
Coincidence Blocking		0.2	
PID		0.4	
π Decay	0.03		0.5
π Absorption		0.1	1.5
Monte Carlo Generator	0.2	1.0	0.5
Radiative Corrections	0.1	0.4	2.0
Offsets	0.4	1.0	
Quadrature Sum	0.6	1.6	3.3
Fpi-2 Values	0.9	1.9	3.5

Corrections and backgrounds


Radiative corrections \rightarrow emissions of "extra" photons by incoming/outgoing electrons, outgoing pion

Contributions:

- → SIDIS events from other kinematics can radiate into experimental acceptance → can also radiate out of acceptance
- → Events from exclusive processes can radiate into acceptance

→ For example: H(e,e' π +)n, H(e,e' π +) Δ^0

Additional background possible from exclusive vector meson production \rightarrow can decay into $\pi^+ \pi^-$ pair \rightarrow Dominate by diffractive ρ^0 production

Corrections and backgrounds

Exclusive

0.7

0.7

0.8

z

• π • π΄

0.8

z

Example from Hem Bhatt's thesis

0.2

0.1

n

0.2

0.1

0

son Lab

0.3

0.3

x=0.3

0.4

0.4

x=0.5 $Q^2 = 6.1 \text{ GeV}^2$

 $Q^2 = 3.5 \text{ GeV}^2$

0.5

0.5

0.6

0.6

γ(p→π⁺π⁻)γ(e′πX)

- \rightarrow Exclusive, and delta production estimates based on models that describe the Hall C 2018 SIDIS and world exclusive data
- \rightarrow Rho model based on HERMES modifications to Pythia, with tweaks to improve agreement with JLab 6 GeV results

0.8

z

0.8

z

Rho

0.7

0.7

۲(e/πX) 0.0 0.0 0.0

0.1

n

0.1

0.05

0.3

0.3

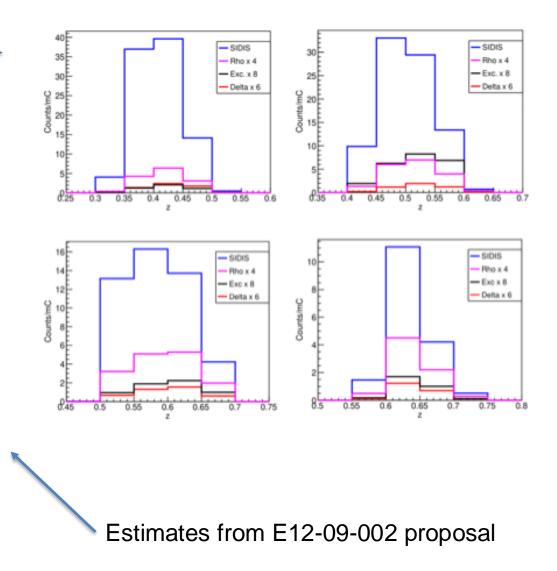
x=0.3

 $Q^2 = 3.5 \text{ GeV}^2$

0.4

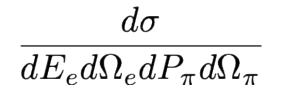
 $Q^2 = 6.1 \text{ GeV}^2$

0.4


x=0.5

0.5

0.5


0.6

0.6

15

Extraction of cross sections

of scattered electrons in E_e, Ω_e bin in coincidence with a pion in given P_{π} , Ω_{π} bin

 $\Delta E_e \Delta \Omega_e \Delta P_\pi \Delta \Omega_\pi$ (# of target protons/cm²) (# of incident electrons)

In principle, can calculate cross section "by-hand"

- \rightarrow # of events from output of analyzer hcana
- \rightarrow Incident electrons from beam current measurements
- \rightarrow Target particle from target density and thickness
- \rightarrow Phase space from Monte Carlo simulation

Also need efficiency corrections:

- \rightarrow Live times (computer and electronic)
- → Tracking efficiency
- \rightarrow Detector efficiencies

Other corrections:

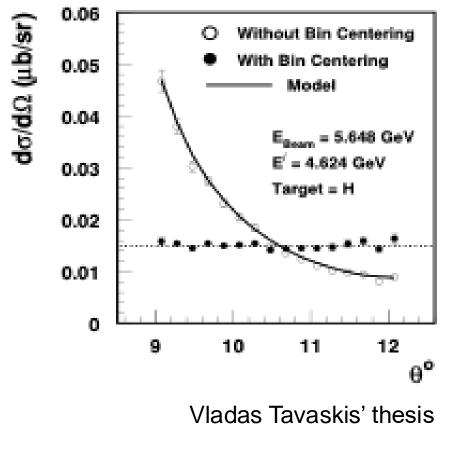
- → Radiative effects
- \rightarrow Bin centering
- \rightarrow Pion decay

Bin centering

When determining cross section, what kinematics do we quote?

→ Events are integrated over non-zero phasespace in (x,Q²)

Can we just average x and Q²?


Jefferson Lab

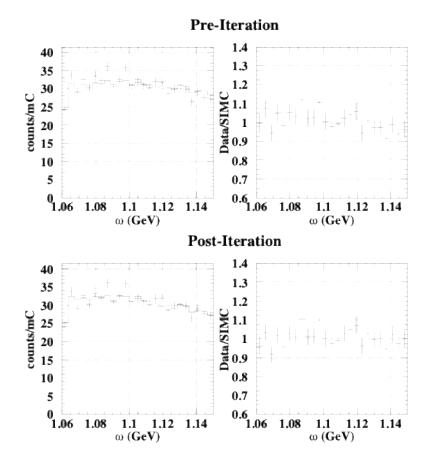
- → If cross section is linear in those variables over the bin size, this could be ok
- → If cross section not linear average cross section at average (x,Q²) is not the same as the cross section evaluated at average (x,Q²)

Need to "bin-center" the data to quote cross-section at particular (x,Q^2)

- → This can be done by applying explicit weight to each event OR
- → Can be done implicitly by comparing data to crosssection weighted simulation

Inclusive example

For coincidence reactions this is easier


Extraction of cross sections

Easiest technique is the ratio method:

$$\left[\frac{d\sigma(x_0, Q_0^2, z_0, P_{T0})}{dE_e d\Omega_e dP_\pi d\Omega_\pi}\right]_{exp} = \frac{Y_{DATA}}{Y_{MC}(\sigma_{model})} \left[\frac{d\sigma(x_0, Q_0^2, z_0, P_{T0})}{dE_e d\Omega_e dP_\pi d\Omega_\pi}\right]_{model}$$

Monte Carlo includes radiative effects, pion decay, multiple scattering, acceptance ...

By using the ratio method is performing an "implicit" bin centering correction – but cross section model used in the MC must agree with the data \rightarrow may require correction and iteration of the model cross section

18

Extraction of cross sections - SIDIS

$$\left[\frac{d\sigma(x_0, Q_0^2, z_0, P_{T0})}{dE_e d\Omega_e dP_\pi d\Omega_\pi}\right]_{exp} = \frac{Y_{DATA}}{Y_{MC}(\sigma_{model})} \left[\frac{d\sigma(x_0, Q_0^2, z_0, P_{T0})}{dE_e d\Omega_e dP_\pi d\Omega_\pi}\right]_{model}$$

Need to decide how you want to bin/present data, e.g., show z-dependence at fixed P_T , P_T dependence at fixed z, etc.

 $Y_{data} \rightarrow$ efficiency-corrected # of counts normalized to charge

 \rightarrow counts from root trees, charge and efficiencies from report file output from hcana

 $Y_{MC} \rightarrow$ Monte Carlo yield from SIMC \rightarrow cross section weighted, includes target thickness, RC, etc.

 $\sigma_{model} \rightarrow$ usually from stand-alone calculation. Difficult (although not impossible) to get cross section at particular point from simc. Crucial that stand-alone calculation matches model in simc exactly

Extraction of cross sections - DIS

$$\left[\frac{d\sigma(x_0, Q_0^2)}{dE_e d\Omega_e}\right]_{exp} = \frac{Y_{DATA}}{Y_{MC}(\sigma_{model})} \left[\frac{d\sigma(x_0, Q_0^2)}{dE_e d\Omega_e}\right]_{model}$$

 $Y_{data} \rightarrow$ efficiency-corrected # of counts normalized to charge

 \rightarrow counts from root trees, charge and efficiencies from report file output from hcana

 $Y_{MC} \rightarrow$ More complicated than simc. Radiative corrections come from stand-alone program (outputs tables). MC yield from single-arm Monte-Carlo + cross section weights from tables. Must write program to combine RC weights + single-arm MC events

 $\sigma_{model} \rightarrow$ from same tables as RC (but using cross section at vertex instead)

Analysis to-do list:

- Standard data analysis stuff
 - Reference time and time window cuts
 - Detector and beamline calibrations
 - Determine target boiling corrections, check other efficiencies
 - Determination of kinematic offsets
 - Determination of charge normalized, efficiency-corrected data yields

today

- Monte Carlo model iteration
- Extract cross sections/ratio \rightarrow Rosenbluth separations
- Publish
- High-priority for early in experiment running
 - Online reference time and time window cuts
 - Online calibrations
 - Event counter (simple, fast) to ensure we are taking adequate statistics
 - Normalization checks compare elastic and DIS yields to MC
 - Online target boiling checks
 - Optics checks (?)

Preparations for next meeting

- Make sure you can access JLab computer systems remotely
 - Easiest to request access to linux VDI
 - https://jlab.servicenowservices.com/sp?sys_kb_id=dec16b0ddb7f0410ee4a3889fc961944&id =kb_article_view&sysparm_rank=1&sysparm_tsqueryId=db133dbc97e79a507d05bba6f053af cd
 - Submit request to helpdesk@jlab.org if you don't already have access
- Get 2-factor token \rightarrow needed to access ifarm computers (another helpdesk request)
- Check if you are part of the c-rsidis group \rightarrow type "groups" on ifarm
 - If not, email Hanjie Liu (<u>hanjie@jlab.org</u>) to request to be added
 - This will give you access to the rsidis group and work disks
- Learn about loading modules:
 - <u>https://jlab.servicenowservices.com/scicomp?id=kb_article_view&sysparm_article=KB001467</u>
 <u>1</u>
 - To access root on ifarm, you'll have to load the appropriate module
- If you like python, you can request access to the JLab instance of jupyterhub:
 - https://jupyterhub.jlab.org/
- RSIDIS elog: https://hallcweb.jlab.org/elogs/R-SIDIS+Experiment/

