Difference between revisions of "Elong-13-05-01-Azz-Method-2"

From HallCWiki
Jump to navigationJump to search
()
 
(4 intermediate revisions by the same user not shown)
Line 3: Line 3:
 
| style="width: 200px;" | Target Material = ND3
 
| style="width: 200px;" | Target Material = ND3
 
|-  
 
|-  
| <math>z_{\mathrm{tgt}} = 3\mathrm{ cm}</math>
+
| $z_{\mathrm{tgt}} = 3\mathrm{ cm}$
 
|-
 
|-
| <math>p_f = 0.65</math>
+
| $p_f = 0.65$
 
|-
 
|-
| <math>P_{zz} = 20\%</math>
+
| $P_{zz} = 20\%$
 
|-
 
|-
| <math>N_{A} = 6.0221413\cdot 10^{23}</math>
+
| $N_{A} = 6.0221413\cdot 10^{23}$
 
|-
 
|-
| <math>\rho_{\mathrm{He}} = 0.1412 \mathrm{g/cm}^3</math>
+
| $\rho_{\mathrm{He}} = 0.1412 \mathrm{g/cm}^3$
 
|-
 
|-
| <math>M_{\mathrm{He}} = 4.0026 \mathrm{g/mole}</math>
+
| $M_{\mathrm{He}} = 4.0026 \mathrm{g/mole}$
 
|-
 
|-
| <math>\rho_{\mathrm{ND}_3} = 1.007 \mathrm{g/cm}^3</math>
+
| $\rho_{\mathrm{ND}_3} = 1.007 \mathrm{g/cm}^3$
 
|-
 
|-
| <math>M_{\mathrm{ND}_3} = 20 \mathrm{g/mole}</math>
+
| $M_{\mathrm{ND}_3} = 20 \mathrm{g/mole}$
 
|-
 
|-
| <math>I_{\mathrm{beam}} = 0.115 \mathrm{\mu A}</math>
+
| $I_{\mathrm{beam}} = 0.115 \mathrm{\mu A}$
 
|-
 
|-
| <math>\delta F_1^d = 5\%</math>
+
| $\delta F_1^d = 5\%$
 
|-
 
|-
 
|}
 
|}
Line 28: Line 28:
  
 
{| class="wikitable" style="text-align:center; width:800px;" border="0"  
 
{| class="wikitable" style="text-align:center; width:800px;" border="0"  
|style="width: 50px; height: 65px;" |(1) || <math>R_{\mathrm{Total}} = \mathcal{A}\left[ \mathcal{L}_{\mathrm{He}}\left( \frac{d^2\sigma_{\mathrm{He}}^u}{d\Omega dE'}\right) + \mathcal{L}_{\mathrm{N}}\left( \frac{d^2\sigma_{\mathrm{N}}^u}{d\Omega dE'}\right) + \mathcal{L}_{\mathrm{D}}\left( \frac{d^2\sigma_{\mathrm{D}}}{d\Omega dE'}\right) \right]</math>
+
|style="width: 50px; height: 65px;" |(1) || $R_{\mathrm{Total}} = \mathcal{A}\left[ \mathcal{L}_{\mathrm{He}}\left( \frac{d^2\sigma_{\mathrm{He}}^u}{d\Omega dE'}\right) + \mathcal{L}_{\mathrm{N}}\left( \frac{d^2\sigma_{\mathrm{N}}^u}{d\Omega dE'}\right) + \mathcal{L}_{\mathrm{D}}\left( \frac{d^2\sigma_{\mathrm{D}}}{d\Omega dE'}\right) \right]$
 
|-
 
|-
|style="width: 50px; height: 65px;" |(2) || <math>R_{\mathrm{Total}}  = \mathcal{A}\left[ \mathcal{L}_{\mathrm{He}}\left( \frac{d^2\sigma_{\mathrm{He}}^u}{d\Omega dE'}\right) + \mathcal{L}_{\mathrm{N}}\left( \frac{d^2\sigma_{\mathrm{N}}^u}{d\Omega dE'}\right) + \mathcal{L}_{\mathrm{D}}\left( \frac{d^2\sigma_{\mathrm{D}}^u}{d\Omega dE'}\left[ 1 + \frac{1}{2}P_{zz}A_{zz}^d \right]\right) \right]  </math>
+
|style="width: 50px; height: 65px;" |(2) || $R_{\mathrm{Total}}  = \mathcal{A}\left[ \mathcal{L}_{\mathrm{He}}\left( \frac{d^2\sigma_{\mathrm{He}}^u}{d\Omega dE'}\right) + \mathcal{L}_{\mathrm{N}}\left( \frac{d^2\sigma_{\mathrm{N}}^u}{d\Omega dE'}\right) + \mathcal{L}_{\mathrm{D}}\left( \frac{d^2\sigma_{\mathrm{D}}^u}{d\Omega dE'}\left[ 1 + \frac{1}{2}P_{zz}A_{zz}^d \right]\right) \right]  $
 
|-
 
|-
|style="width: 50px; height: 65px;" |(2a) || <math>R_{\mathrm{Total}}  = \mathcal{A}\left[ \mathcal{L}_{\mathrm{He}} \sigma_{\mathrm{He}}^u  + \mathcal{L}_{\mathrm{N}} \sigma_{\mathrm{N}}^u + \mathcal{L}_{\mathrm{D}} \sigma_{\mathrm{D}}^u\left( 1 + \frac{1}{2}P_{zz}A_{zz}^d \right) \right]  </math>
+
|style="width: 50px; height: 65px;" |(2a) || $R_{\mathrm{Total}}  = \mathcal{A}\left[ \mathcal{L}_{\mathrm{He}} \sigma_{\mathrm{He}}^u  + \mathcal{L}_{\mathrm{N}} \sigma_{\mathrm{N}}^u + \mathcal{L}_{\mathrm{D}} \sigma_{\mathrm{D}}^u\left( 1 + \frac{1}{2}P_{zz}A_{zz}^d \right) \right]  $
 
|}
 
|}
 
where <br>
 
where <br>
 
{| class="wikitable" style="text-align:center; width:800px;" border="0"  
 
{| class="wikitable" style="text-align:center; width:800px;" border="0"  
|style="width: 50px; height: 65px;" |(3) || <math>\mathcal{A} = \left( \Delta\Omega \Delta E' \right)</math>
+
|style="width: 50px; height: 65px;" |(3) || $\mathcal{A} = \left( \Delta\Omega \Delta E' \right)$
 
|-
 
|-
|style="width: 50px; height: 65px;" |(4) || <math>\mathcal{L}_{\mathrm{He}} = \left[ \mathcal{N}_A  \frac{\rho_{\mathrm{He}}}{M_{\mathrm{He}}}\left(1 - p_f\right) \right] \cdot \left( \frac{I_{\mathrm{beam}}}{e} \right) \cdot z_{\mathrm{tgt}}</math>
+
|style="width: 50px; height: 65px;" |(4) || $\mathcal{L}_{\mathrm{He}} = \left[ \mathcal{N}_A  \frac{\rho_{\mathrm{He}}}{M_{\mathrm{He}}}\left(1 - p_f\right) \right] \cdot \left( \frac{I_{\mathrm{beam}}}{e} \right) \cdot z_{\mathrm{tgt}}$
 
|-
 
|-
|style="width: 50px; height: 65px;" |(5) || <math>\mathcal{L}_{\mathrm{N}} = \left[ \mathcal{N}_A  \frac{\rho_{\mathrm{ND}_3}}{M_{\mathrm{ND}_3}} p_f \right] \cdot \left( \frac{I_{\mathrm{beam}}}{e} \right) \cdot z_{\mathrm{tgt}}</math>
+
|style="width: 50px; height: 65px;" |(5) || $\mathcal{L}_{\mathrm{N}} = \left[ \mathcal{N}_A  \frac{\rho_{\mathrm{ND}_3}}{M_{\mathrm{ND}_3}} p_f \right] \cdot \left( \frac{I_{\mathrm{beam}}}{e} \right) \cdot z_{\mathrm{tgt}}$
 
|-
 
|-
|style="width: 50px; height: 65px;" |(6) || <math>\mathcal{L}_{\mathrm{D}} = 3\left[ \mathcal{N}_A  \frac{\rho_{\mathrm{ND}_3}}{M_{\mathrm{ND}_3}} p_f \right] \cdot \left( \frac{I_{\mathrm{beam}}}{e} \right) \cdot z_{\mathrm{tgt}}</math>
+
|style="width: 50px; height: 65px;" |(6) || $\mathcal{L}_{\mathrm{D}} = 3\left[ \mathcal{N}_A  \frac{\rho_{\mathrm{ND}_3}}{M_{\mathrm{ND}_3}} p_f \right] \cdot \left( \frac{I_{\mathrm{beam}}}{e} \right) \cdot z_{\mathrm{tgt}}$
 
|-
 
|-
|style="width: 50px; height: 85px;" |(7) || <math>\sigma^u_X = \frac{d^2\sigma^u_X}{d\Omega dE'} = A_X \left( \frac{d\sigma}{d\Omega} \right) _{\mathrm{Mott}_{\mathrm{p}}} \left[ \frac{2\cdot \left(\frac{F_1^{X}}{A_X} \right)}{m_{p}}\tan^2\left( \frac{\theta_{e'}}{2} \right) + \frac{\left( \frac{F_2^X}{A_X}\right) }{\nu} \right]</math>
+
|style="width: 50px; height: 85px;" |(7) || $\sigma^u_X = \frac{d^2\sigma^u_X}{d\Omega dE'} = A_X \left( \frac{d\sigma}{d\Omega} \right) _{\mathrm{Mott}_{\mathrm{p}}} \left[ \frac{2\cdot \left(\frac{F_1^{X}}{A_X} \right)}{m_{p}}\tan^2\left( \frac{\theta_{e'}}{2} \right) + \frac{\left( \frac{F_2^X}{A_X}\right) }{\nu} \right]$
 
|-
 
|-
|style="width: 50px; height: 65px;" |(8) || <math>\left( \frac{d\sigma}{d\Omega} \right) _{\mathrm{Mott}_{\mathrm{p}}}=\frac{1^2 \alpha^2 \hbar^2 c^2}{4E^2\sin^4\left( \frac{\theta}{2} \right)}\cos^2\left( \frac{\theta}{2} \right)</math>
+
|style="width: 50px; height: 65px;" |(8) || $\left( \frac{d\sigma}{d\Omega} \right) _{\mathrm{Mott}_{\mathrm{p}}}=\frac{1^2 \alpha^2 \hbar^2 c^2}{4E^2\sin^4\left( \frac{\theta}{2} \right)}\cos^2\left( \frac{\theta}{2} \right)$
 
|-
 
|-
|style="width: 50px; height: 65px;" |(9) || <math>\sigma_D = \frac{d^2\sigma_{\mathrm{D}}}{d\Omega dE'} = \frac{d^2\sigma_{\mathrm{D}}^u}{d\Omega dE'}\left[ 1 + \frac{1}{2}P_{zz}A_{zz}^d \right] </math>
+
|style="width: 50px; height: 65px;" |(9) || $\sigma_D = \frac{d^2\sigma_{\mathrm{D}}}{d\Omega dE'} = \frac{d^2\sigma_{\mathrm{D}}^u}{d\Omega dE'}\left[ 1 + \frac{1}{2}P_{zz}A_{zz}^d \right] $
 
|-
 
|-
 
|}
 
|}
Line 55: Line 55:
  
 
{| class="wikitable" style="text-align:center; width:800px;" border="0"  
 
{| class="wikitable" style="text-align:center; width:800px;" border="0"  
|style="width: 50px; height: 65px;" |(10) || <math>N_{Pol} - N_{u} = R^{Pol}_{\mathrm{Total}}t^{Pol}_{\mathrm{Total}} - R^{u}_{\mathrm{Total}}t^{u}_{\mathrm{Total}} </math>
+
|style="width: 50px; height: 65px;" |(10) || $N_{Pol} - N_{u} = R^{Pol}_{\mathrm{Total}}t^{Pol}_{\mathrm{Total}} - R^{u}_{\mathrm{Total}}t^{u}_{\mathrm{Total}} $
 
|-
 
|-
|style="width: 50px; height: 65px;" |(11) || <math>N_{u} = R^{u}_{\mathrm{Total}}t^{u}_{\mathrm{Total}} </math>
+
|style="width: 50px; height: 65px;" |(11) || $N_{u} = R^{u}_{\mathrm{Total}}t^{u}_{\mathrm{Total}} $
 
|-
 
|-
 
|}
 
|}
  
If we assume that <math>t^{Pol}_{\mathrm{Total}} \approx t^{u}_{\mathrm{Total}} \approx t</math>, then
+
If we assume that $t^{Pol}_{\mathrm{Total}} \approx t^{u}_{\mathrm{Total}} \approx t$, then
  
 
{| class="wikitable" style="text-align:center; width:800px;" border="0"  
 
{| class="wikitable" style="text-align:center; width:800px;" border="0"  
|style="width: 50px; height: 65px;" |(12) || <math>N_{Pol} - N_{u} = \left( R^{Pol}_{\mathrm{Total}} - R^{u}_{\mathrm{Total}}\right) t </math>
+
|style="width: 50px; height: 65px;" |(12) || $N_{Pol} - N_{u} = \left( R^{Pol}_{\mathrm{Total}} - R^{u}_{\mathrm{Total}}\right) t $
 
|-
 
|-
|style="width: 50px; height: 65px;" |(13) || <math>N_{Pol} - N_{u} = \left( \mathcal{A}\left[ \mathcal{L}_{\mathrm{He}} \sigma_{\mathrm{He}}^u  + \mathcal{L}_{\mathrm{N}} \sigma_{\mathrm{N}}^u + \mathcal{L}_{\mathrm{D}} \sigma_{\mathrm{D}}^u\left( 1 + \frac{1}{2}P_{zz} A_{zz}^d \right) \right] - \mathcal{A}\left[ \mathcal{L}_{\mathrm{He}} \sigma_{\mathrm{He}}^u  + \mathcal{L}_{\mathrm{N}} \sigma_{\mathrm{N}}^u + \mathcal{L}_{\mathrm{D}} \sigma_{\mathrm{D}}^u \right] \right) t  </math>
+
|style="width: 50px; height: 65px;" |(13) || $N_{Pol} - N_{u} = \left( \mathcal{A}\left[ \mathcal{L}_{\mathrm{He}} \sigma_{\mathrm{He}}^u  + \mathcal{L}_{\mathrm{N}} \sigma_{\mathrm{N}}^u + \mathcal{L}_{\mathrm{D}} \sigma_{\mathrm{D}}^u\left( 1 + \frac{1}{2}P_{zz} A_{zz}^d \right) \right] - \mathcal{A}\left[ \mathcal{L}_{\mathrm{He}} \sigma_{\mathrm{He}}^u  + \mathcal{L}_{\mathrm{N}} \sigma_{\mathrm{N}}^u + \mathcal{L}_{\mathrm{D}} \sigma_{\mathrm{D}}^u \right] \right) t  $
 
|-
 
|-
|style="width: 50px; height: 65px;" |(13a) || <math>N_{Pol} - N_{u} = \left( \mathcal{A}\mathcal{L}_{\mathrm{D}}\sigma_{\mathrm{D}}^u \left( \frac{1}{2}P_{zz} A_{zz} \right) \right) t</math>
+
|style="width: 50px; height: 65px;" |(13a) || $N_{Pol} - N_{u} = \left( \mathcal{A}\mathcal{L}_{\mathrm{D}}\sigma_{\mathrm{D}}^u \left( \frac{1}{2}P_{zz} A_{zz} \right) \right) t$
 
|-
 
|-
|style="width: 50px; height: 65px;" |(14) || <math>N_{u} = R^{u}_{\mathrm{Total}}t </math>
+
|style="width: 50px; height: 65px;" |(14) || $N_{u} = R^{u}_{\mathrm{Total}}t $
 
|-
 
|-
|style="width: 50px; height: 65px;" |(15) || <math>N_{u} = \mathcal{A}\left[ \mathcal{L}_{\mathrm{He}} \sigma_{\mathrm{He}}^u  + \mathcal{L}_{\mathrm{N}} \sigma_{\mathrm{N}}^u + \mathcal{L}_{\mathrm{D}} \sigma_{\mathrm{D}}^u \right]t </math>
+
|style="width: 50px; height: 65px;" |(15) || $N_{u} = \mathcal{A}\left[ \mathcal{L}_{\mathrm{He}} \sigma_{\mathrm{He}}^u  + \mathcal{L}_{\mathrm{N}} \sigma_{\mathrm{N}}^u + \mathcal{L}_{\mathrm{D}} \sigma_{\mathrm{D}}^u \right]t $
 
|-
 
|-
|style="width: 50px; height: 65px;" |(16) || <math>\frac{N_{Pol} - N_{u}}{N_{u}} = \left( \frac{\mathcal{L}_{\mathrm{D}}\sigma_{\mathrm{D}}^u}{ \mathcal{L}_{\mathrm{He}} \sigma_{\mathrm{He}}^u  + \mathcal{L}_{\mathrm{N}} \sigma_{\mathrm{N}}^u + \mathcal{L}_{\mathrm{D}}\sigma_{\mathrm{D}}^u } \right) \frac{1}{2} A_{zz}  P_{zz}</math>
+
|style="width: 50px; height: 65px;" |(16) || $\frac{N_{Pol} - N_{u}}{N_{u}} = \left( \frac{\mathcal{L}_{\mathrm{D}}\sigma_{\mathrm{D}}^u}{ \mathcal{L}_{\mathrm{He}} \sigma_{\mathrm{He}}^u  + \mathcal{L}_{\mathrm{N}} \sigma_{\mathrm{N}}^u + \mathcal{L}_{\mathrm{D}}\sigma_{\mathrm{D}}^u } \right) \frac{1}{2} A_{zz}  P_{zz}$
 
|-
 
|-
|style="width: 50px; height: 65px;" |(17) || <math>\frac{N_{Pol} - N_{u}}{N_{u}} = f \frac{1}{2} A_{zz}  P_{zz}</math>
+
|style="width: 50px; height: 65px;" |(17) || $\frac{N_{Pol} - N_{u}}{N_{u}} = f \frac{1}{2} A_{zz}  P_{zz}$
 
|-
 
|-
|style="width: 50px; height: 65px;" |(18) || <math>A_{\mathrm{meas}}^{(2)} = \frac{N_{Pol} - N_{u}}{N_{u}}</math>
+
|style="width: 50px; height: 65px;" |(18) || $A_{\mathrm{meas}}^{(2)} = \frac{N_{Pol} - N_{u}}{N_{u}}$
 
|-
 
|-
|style="width: 50px; height: 65px;" |(18a) || <math>A_{\mathrm{meas}}^{(2)} = f \frac{1}{2} A_{zz}  P_{zz}</math>
+
|style="width: 50px; height: 65px;" |(18a) || $A_{\mathrm{meas}}^{(2)} = f \frac{1}{2} A_{zz}  P_{zz}$
 
|-
 
|-
|style="width: 50px; height: 65px;" |(19) || <math>A_{zz} = \frac{2  }{f \cdot P_{zz}}A_{\mathrm{meas}}^{(2)}</math>
+
|style="width: 50px; height: 65px;" |(19) || $A_{zz} = \frac{2  }{f \cdot P_{zz}}A_{\mathrm{meas}}^{(2)}$
 
|-
 
|-
 
|}
 
|}
Line 89: Line 89:
  
 
{| class="wikitable" style="text-align:center; width:800px;" border="0"  
 
{| class="wikitable" style="text-align:center; width:800px;" border="0"  
|style="width: 50px; height: 65px;" |(20) || <math>\delta A_{zz} = \sqrt{\left( \frac{\partial A_{zz}}{\partial A_{\mathrm{meas}}^{(2)}} \delta A_{\mathrm{meas}}^{(2)} \right)^2 + \left( \frac{\partial A_{zz}}{\partial f} \delta f \right)^2 + \left( \frac{\partial A_{zz}}{\partial P_{zz}} \delta P_{zz} \right)^2 }</math>
+
|style="width: 50px; height: 65px;" |(20) || $\delta A_{zz} = \sqrt{\left( \frac{\partial A_{zz}}{\partial A_{\mathrm{meas}}^{(2)}} \delta A_{\mathrm{meas}}^{(2)} \right)^2 + \left( \frac{\partial A_{zz}}{\partial f} \delta f \right)^2 + \left( \frac{\partial A_{zz}}{\partial P_{zz}} \delta P_{zz} \right)^2 }$
 
|-
 
|-
|style="width: 50px; height: 65px;" |(20a) || <math>\delta A_{zz} = \sqrt{\left( \delta A_{zz}^{\mathrm{Stat}} \right) ^2 + \left( \delta A_{zz}^{\mathrm{Dil}} \right) ^2 + \left( \delta A_{zz}^{\mathrm{Pol}} \right) ^2  }</math>
+
|style="width: 50px; height: 65px;" |(20a) || $\delta A_{zz} = \sqrt{\left( \delta A_{zz}^{\mathrm{Stat}} \right) ^2 + \left( \delta A_{zz}^{\mathrm{Dil}} \right) ^2 + \left( \delta A_{zz}^{\mathrm{Pol}} \right) ^2  }$
 
|-
 
|-
|style="width: 50px; height: 65px;" |(20b) || <math>\delta A_{zz} = \sqrt{\left( \delta A_{zz}^{\mathrm{Stat}} \right) ^2 + \left( \delta A_{zz}^{\mathrm{Sys}} \right) ^2 }</math>
+
|style="width: 50px; height: 65px;" |(20b) || $\delta A_{zz} = \sqrt{\left( \delta A_{zz}^{\mathrm{Stat}} \right) ^2 + \left( \delta A_{zz}^{\mathrm{Sys}} \right) ^2 }$
 
|-
 
|-
 
|}
 
|}
  
Ignoring <math>\delta A_{zz}^{\mathrm{Sys}}</math> for now (and in all of the plots I'm showing), then
+
Ignoring $\delta A_{zz}^{\mathrm{Sys}}$ for now (and in all of the plots I'm showing), then
  
 
{| class="wikitable" style="text-align:center; width:800px;" border="0"  
 
{| class="wikitable" style="text-align:center; width:800px;" border="0"  
|style="width: 50px; height: 65px;" |(21) || <math> \delta A_{zz}^{\mathrm{Stat}} = \frac{\partial A_{zz}}{\partial A_{\mathrm{meas}}^{(2)}} \delta A_{\mathrm{meas}}^{(2)} = \frac{2}{f\cdot P_{zz}} \delta A_{\mathrm{meas}}^{(2)} </math>
+
|style="width: 50px; height: 65px;" |(21) || $ \delta A_{zz}^{\mathrm{Stat}} = \frac{\partial A_{zz}}{\partial A_{\mathrm{meas}}^{(2)}} \delta A_{\mathrm{meas}}^{(2)} = \frac{2}{f\cdot P_{zz}} \delta A_{\mathrm{meas}}^{(2)} $
 
|-
 
|-
|style="width: 50px; height: 65px;" |(22) || <math> \delta A_{\mathrm{meas}}^{(2)} = \sqrt{ \left( \frac{\partial A_{\mathrm{meas}}^{(2)}}{\partial N_{Pol}} \delta N_{Pol} \right)^2 + \left( \frac{\partial A_{\mathrm{meas}}^{(2)}}{\partial N_{u}} \delta N_{u} \right)^2 }</math>
+
|style="width: 50px; height: 65px;" |(22) || $ \delta A_{\mathrm{meas}}^{(2)} = \sqrt{ \left( \frac{\partial A_{\mathrm{meas}}^{(2)}}{\partial N_{Pol}} \delta N_{Pol} \right)^2 + \left( \frac{\partial A_{\mathrm{meas}}^{(2)}}{\partial N_{u}} \delta N_{u} \right)^2 }$
 
|-
 
|-
|style="width: 50px; height: 65px;" |(23) || <math> \delta A_{\mathrm{meas}}^{(2)} = \sqrt{ \left( \frac{1}{N_u} \sqrt{N_{Pol}} \right)^2 + \left( -\frac{N_{Pol}}{N_u^2} \sqrt{N_u} \right)^2 }</math>
+
|style="width: 50px; height: 65px;" |(23) || $ \delta A_{\mathrm{meas}}^{(2)} = \sqrt{ \left( \frac{1}{N_u} \sqrt{N_{Pol}} \right)^2 + \left( -\frac{N_{Pol}}{N_u^2} \sqrt{N_u} \right)^2 }$
 
|-
 
|-
|style="width: 50px; height: 65px;" |(24) || <math> \delta A_{\mathrm{meas}}^{(2)} = \sqrt{  \frac{N_{Pol}}{N_u^2} + \frac{N_{Pol}^2}{N_u^3}  }</math>
+
|style="width: 50px; height: 65px;" |(24) || $ \delta A_{\mathrm{meas}}^{(2)} = \sqrt{  \frac{N_{Pol}}{N_u^2} + \frac{N_{Pol}^2}{N_u^3}  }$
 
|-
 
|-
 
|}
 
|}
  
If we assume that <math>N_{Pol} \approx N_u \approx \frac{N}{2}</math>, then
+
If we assume that $N_{Pol} \approx N_u \approx \frac{N}{2}$, then
  
 
{| class="wikitable" style="text-align:center; width:800px;" border="0"  
 
{| class="wikitable" style="text-align:center; width:800px;" border="0"  
|style="width: 50px; height: 65px;" |(25) || <math> \delta A_{\mathrm{meas}}^{(2)} = \sqrt{  \frac{N/2}{N^2/4} + \frac{N^2/4}{N^3/8}  }</math>
+
|style="width: 50px; height: 65px;" |(25) || $ \delta A_{\mathrm{meas}}^{(2)} = \sqrt{  \frac{N/2}{N^2/4} + \frac{N^2/4}{N^3/8}  }$
 
|-
 
|-
|style="width: 50px; height: 65px;" |(25a) || <math> \delta A_{\mathrm{meas}}^{(2)} = \sqrt{  \frac{2}{N} + \frac{2}{N}  }</math>
+
|style="width: 50px; height: 65px;" |(25a) || $ \delta A_{\mathrm{meas}}^{(2)} = \sqrt{  \frac{2}{N} + \frac{2}{N}  }$
 
|-
 
|-
|style="width: 50px; height: 65px;" |(25b) || <math> \delta A_{\mathrm{meas}}^{(2)} = \frac{2}{\sqrt{N}}</math>
+
|style="width: 50px; height: 65px;" |(25b) || $ \delta A_{\mathrm{meas}}^{(2)} = \frac{2}{\sqrt{N}}$
 
|-
 
|-
 
|}
 
|}
Line 124: Line 124:
  
 
{| class="wikitable" style="text-align:center; width:800px;" border="0"  
 
{| class="wikitable" style="text-align:center; width:800px;" border="0"  
|style="width: 50px; height: 65px;" |(26) || <math> \delta A_{zz}^{\mathrm{Stat}} = \frac{2}{f\cdot P_{zz}} \delta A_{\mathrm{meas}}^{(2)} </math>
+
|style="width: 50px; height: 65px;" |(26) || $ \delta A_{zz}^{\mathrm{Stat}} = \frac{2}{f\cdot P_{zz}} \delta A_{\mathrm{meas}}^{(2)} $
 
|-
 
|-
|style="width: 50px; height: 65px;" |(26a) || <math> \delta A_{zz}^{\mathrm{Stat}} = \frac{2}{f\cdot P_{zz}} \left( \frac{2}{\sqrt{N}} \right) </math>
+
|style="width: 50px; height: 65px;" |(26a) || $ \delta A_{zz}^{\mathrm{Stat}} = \frac{2}{f\cdot P_{zz}} \left( \frac{2}{\sqrt{N}} \right) $
 
|-
 
|-
|style="width: 50px; height: 65px;" |(27) || <math> \delta A_{zz}^{\mathrm{Stat}} = \frac{4}{f\cdot P_{zz}\sqrt{t\cdot R_{\mathrm{Total}}}} </math>
+
|style="width: 50px; height: 65px;" |(27) || $ \delta A_{zz}^{\mathrm{Stat}} = \frac{4}{f\cdot P_{zz}\sqrt{t\cdot R_{\mathrm{Total}}}} $
 
|-
 
|-
 
|}
 
|}
  
Using the same formalism that HERMES used (which defines <math>F_{1_{\mathrm{HERMES}}}^d = \frac{(1 + Q^2/\nu^2)F_2^d}{2x(1+R)}</math> with <math>F_2^d=\frac{F_2^p + F_2^n}{2}</math> as a ''per nucleon'' quantity, which corresponds to the Bosted that uses ''per nucleus'' by <math>F_{1_{\mathrm{HERMES}}}^d = \frac{F_{1_{\mathrm{Bosted}}}^d}{A_{\mathrm{D}}} = \frac{F_1^d}{2}</math> -- [[Elong-13-05-01#Matching_HERMES_F1d.2C_dAzzd.2C_and_db1d|as described previously]]), we can extract <math>b_1^d</math> and its uncertainty by
+
Using the same formalism that HERMES used (which defines $F_{1_{\mathrm{HERMES}}}^d = \frac{(1 + Q^2/\nu^2)F_2^d}{2x(1+R)}$ with $F_2^d=\frac{F_2^p + F_2^n}{2}$ as a ''per nucleon'' quantity, which corresponds to the Bosted that uses ''per nucleus'' by $F_{1_{\mathrm{HERMES}}}^d = \frac{F_{1_{\mathrm{Bosted}}}^d}{A_{\mathrm{D}}} = \frac{F_1^d}{2}$ -- [[Elong-13-05-01#Matching_HERMES_F1d.2C_dAzzd.2C_and_db1d|as described previously]]), we can extract $b_1^d$ and its uncertainty by
 
{| class="wikitable" style="text-align:center; width:800px;" border="0"  
 
{| class="wikitable" style="text-align:center; width:800px;" border="0"  
|style="width: 50px; height: 65px;" |(18) || <math> b_1^d = - \frac{3}{2}A_{zz} \left( \frac{F_1^d}{A_{\mathrm{D}}} \right)= - \frac{3}{2}A_{zz} \left( \frac{F_1^d}{2} \right)</math>
+
|style="width: 50px; height: 65px;" |(18) || $ b_1^d = - \frac{3}{2}A_{zz} \left( \frac{F_1^d}{A_{\mathrm{D}}} \right)= - \frac{3}{2}A_{zz} \left( \frac{F_1^d}{2} \right)$
 
|-
 
|-
|style="width: 50px; height: 65px;" |(19) || <math> \delta b_1^d =\sqrt{ \left(\frac{\partial b_1^d}{\partial A_{zz}} \delta A_{zz} \right)^2 + \left(\frac{\partial b_1^d}{\partial F_1^d} \delta F_1^d \right)^2 }</math>
+
|style="width: 50px; height: 65px;" |(19) || $ \delta b_1^d =\sqrt{ \left(\frac{\partial b_1^d}{\partial A_{zz}} \delta A_{zz} \right)^2 + \left(\frac{\partial b_1^d}{\partial F_1^d} \delta F_1^d \right)^2 }$
 
|-
 
|-
|style="width: 50px; height: 65px;" |(19a) || <math> \delta b_1^d =\sqrt{ \left[ - \frac{3}{2} \left( \frac{F_1^d}{2} \right)\delta A_{zz} \right]^2 + \left[ - \frac{3}{2} A_{zz} \left( \frac{1}{2} \right)\delta F_1^d \right]^2 }</math>
+
|style="width: 50px; height: 65px;" |(19a) || $ \delta b_1^d =\sqrt{ \left[ - \frac{3}{2} \left( \frac{F_1^d}{2} \right)\delta A_{zz} \right]^2 + \left[ - \frac{3}{2} A_{zz} \left( \frac{1}{2} \right)\delta F_1^d \right]^2 }$
 
|-
 
|-
 
|}
 
|}
Line 153: Line 153:
 
[[Image: 2013-05-02-total-rates.png]]
 
[[Image: 2013-05-02-total-rates.png]]
  
==F1 from PDFs==
+
==Comparing F1 from PDFs and Bosted==
 +
'''Note: For the plots below, Phys Rate = D2 Rate Only'''
 +
 
 
The plot below uses F1 calculated per nucleon from the PDF code, not from the Bosted code.
 
The plot below uses F1 calculated per nucleon from the PDF code, not from the Bosted code.
  
 
[[Image: 2013-05-02-pdf-f1.png]]
 
[[Image: 2013-05-02-pdf-f1.png]]
 +
 +
If I calculate F1 per nucleon from the Bosted code, I get:
 +
 +
 +
[[Image: 2013-05-02-bosted-f1.png]]
 +
 +
==Removed arbitrary x cuts==
 +
 +
Removing arbitrary cuts on x, which were being used previously, increased the rate we can take at each point. Current estimates, where Phys Rate = D2 + N + He rates, are:
 +
 +
[[Image: 2013-05-02-remove-x-cuts.png]]
 +
 +
 +
--[[User:Ellie|E. Long]] 20:59, 3 May 2013 (UTC)

Latest revision as of 13:50, 18 October 2023

Azz Formalism - Method 2

Target Material = ND3
$z_{\mathrm{tgt}} = 3\mathrm{ cm}$
$p_f = 0.65$
$P_{zz} = 20\%$
$N_{A} = 6.0221413\cdot 10^{23}$
$\rho_{\mathrm{He}} = 0.1412 \mathrm{g/cm}^3$
$M_{\mathrm{He}} = 4.0026 \mathrm{g/mole}$
$\rho_{\mathrm{ND}_3} = 1.007 \mathrm{g/cm}^3$
$M_{\mathrm{ND}_3} = 20 \mathrm{g/mole}$
$I_{\mathrm{beam}} = 0.115 \mathrm{\mu A}$
$\delta F_1^d = 5\%$


(1) $R_{\mathrm{Total}} = \mathcal{A}\left[ \mathcal{L}_{\mathrm{He}}\left( \frac{d^2\sigma_{\mathrm{He}}^u}{d\Omega dE'}\right) + \mathcal{L}_{\mathrm{N}}\left( \frac{d^2\sigma_{\mathrm{N}}^u}{d\Omega dE'}\right) + \mathcal{L}_{\mathrm{D}}\left( \frac{d^2\sigma_{\mathrm{D}}}{d\Omega dE'}\right) \right]$
(2) $R_{\mathrm{Total}} = \mathcal{A}\left[ \mathcal{L}_{\mathrm{He}}\left( \frac{d^2\sigma_{\mathrm{He}}^u}{d\Omega dE'}\right) + \mathcal{L}_{\mathrm{N}}\left( \frac{d^2\sigma_{\mathrm{N}}^u}{d\Omega dE'}\right) + \mathcal{L}_{\mathrm{D}}\left( \frac{d^2\sigma_{\mathrm{D}}^u}{d\Omega dE'}\left[ 1 + \frac{1}{2}P_{zz}A_{zz}^d \right]\right) \right] $
(2a) $R_{\mathrm{Total}} = \mathcal{A}\left[ \mathcal{L}_{\mathrm{He}} \sigma_{\mathrm{He}}^u + \mathcal{L}_{\mathrm{N}} \sigma_{\mathrm{N}}^u + \mathcal{L}_{\mathrm{D}} \sigma_{\mathrm{D}}^u\left( 1 + \frac{1}{2}P_{zz}A_{zz}^d \right) \right] $

where

(3) $\mathcal{A} = \left( \Delta\Omega \Delta E' \right)$
(4) $\mathcal{L}_{\mathrm{He}} = \left[ \mathcal{N}_A \frac{\rho_{\mathrm{He}}}{M_{\mathrm{He}}}\left(1 - p_f\right) \right] \cdot \left( \frac{I_{\mathrm{beam}}}{e} \right) \cdot z_{\mathrm{tgt}}$
(5) $\mathcal{L}_{\mathrm{N}} = \left[ \mathcal{N}_A \frac{\rho_{\mathrm{ND}_3}}{M_{\mathrm{ND}_3}} p_f \right] \cdot \left( \frac{I_{\mathrm{beam}}}{e} \right) \cdot z_{\mathrm{tgt}}$
(6) $\mathcal{L}_{\mathrm{D}} = 3\left[ \mathcal{N}_A \frac{\rho_{\mathrm{ND}_3}}{M_{\mathrm{ND}_3}} p_f \right] \cdot \left( \frac{I_{\mathrm{beam}}}{e} \right) \cdot z_{\mathrm{tgt}}$
(7) $\sigma^u_X = \frac{d^2\sigma^u_X}{d\Omega dE'} = A_X \left( \frac{d\sigma}{d\Omega} \right) _{\mathrm{Mott}_{\mathrm{p}}} \left[ \frac{2\cdot \left(\frac{F_1^{X}}{A_X} \right)}{m_{p}}\tan^2\left( \frac{\theta_{e'}}{2} \right) + \frac{\left( \frac{F_2^X}{A_X}\right) }{\nu} \right]$
(8) $\left( \frac{d\sigma}{d\Omega} \right) _{\mathrm{Mott}_{\mathrm{p}}}=\frac{1^2 \alpha^2 \hbar^2 c^2}{4E^2\sin^4\left( \frac{\theta}{2} \right)}\cos^2\left( \frac{\theta}{2} \right)$
(9) $\sigma_D = \frac{d^2\sigma_{\mathrm{D}}}{d\Omega dE'} = \frac{d^2\sigma_{\mathrm{D}}^u}{d\Omega dE'}\left[ 1 + \frac{1}{2}P_{zz}A_{zz}^d \right] $

Then

(10) $N_{Pol} - N_{u} = R^{Pol}_{\mathrm{Total}}t^{Pol}_{\mathrm{Total}} - R^{u}_{\mathrm{Total}}t^{u}_{\mathrm{Total}} $
(11) $N_{u} = R^{u}_{\mathrm{Total}}t^{u}_{\mathrm{Total}} $

If we assume that $t^{Pol}_{\mathrm{Total}} \approx t^{u}_{\mathrm{Total}} \approx t$, then

(12) $N_{Pol} - N_{u} = \left( R^{Pol}_{\mathrm{Total}} - R^{u}_{\mathrm{Total}}\right) t $
(13) $N_{Pol} - N_{u} = \left( \mathcal{A}\left[ \mathcal{L}_{\mathrm{He}} \sigma_{\mathrm{He}}^u + \mathcal{L}_{\mathrm{N}} \sigma_{\mathrm{N}}^u + \mathcal{L}_{\mathrm{D}} \sigma_{\mathrm{D}}^u\left( 1 + \frac{1}{2}P_{zz} A_{zz}^d \right) \right] - \mathcal{A}\left[ \mathcal{L}_{\mathrm{He}} \sigma_{\mathrm{He}}^u + \mathcal{L}_{\mathrm{N}} \sigma_{\mathrm{N}}^u + \mathcal{L}_{\mathrm{D}} \sigma_{\mathrm{D}}^u \right] \right) t $
(13a) $N_{Pol} - N_{u} = \left( \mathcal{A}\mathcal{L}_{\mathrm{D}}\sigma_{\mathrm{D}}^u \left( \frac{1}{2}P_{zz} A_{zz} \right) \right) t$
(14) $N_{u} = R^{u}_{\mathrm{Total}}t $
(15) $N_{u} = \mathcal{A}\left[ \mathcal{L}_{\mathrm{He}} \sigma_{\mathrm{He}}^u + \mathcal{L}_{\mathrm{N}} \sigma_{\mathrm{N}}^u + \mathcal{L}_{\mathrm{D}} \sigma_{\mathrm{D}}^u \right]t $
(16) $\frac{N_{Pol} - N_{u}}{N_{u}} = \left( \frac{\mathcal{L}_{\mathrm{D}}\sigma_{\mathrm{D}}^u}{ \mathcal{L}_{\mathrm{He}} \sigma_{\mathrm{He}}^u + \mathcal{L}_{\mathrm{N}} \sigma_{\mathrm{N}}^u + \mathcal{L}_{\mathrm{D}}\sigma_{\mathrm{D}}^u } \right) \frac{1}{2} A_{zz} P_{zz}$
(17) $\frac{N_{Pol} - N_{u}}{N_{u}} = f \frac{1}{2} A_{zz} P_{zz}$
(18) $A_{\mathrm{meas}}^{(2)} = \frac{N_{Pol} - N_{u}}{N_{u}}$
(18a) $A_{\mathrm{meas}}^{(2)} = f \frac{1}{2} A_{zz} P_{zz}$
(19) $A_{zz} = \frac{2 }{f \cdot P_{zz}}A_{\mathrm{meas}}^{(2)}$

In order to get the uncertainty, we'd use

(20) $\delta A_{zz} = \sqrt{\left( \frac{\partial A_{zz}}{\partial A_{\mathrm{meas}}^{(2)}} \delta A_{\mathrm{meas}}^{(2)} \right)^2 + \left( \frac{\partial A_{zz}}{\partial f} \delta f \right)^2 + \left( \frac{\partial A_{zz}}{\partial P_{zz}} \delta P_{zz} \right)^2 }$
(20a) $\delta A_{zz} = \sqrt{\left( \delta A_{zz}^{\mathrm{Stat}} \right) ^2 + \left( \delta A_{zz}^{\mathrm{Dil}} \right) ^2 + \left( \delta A_{zz}^{\mathrm{Pol}} \right) ^2 }$
(20b) $\delta A_{zz} = \sqrt{\left( \delta A_{zz}^{\mathrm{Stat}} \right) ^2 + \left( \delta A_{zz}^{\mathrm{Sys}} \right) ^2 }$

Ignoring $\delta A_{zz}^{\mathrm{Sys}}$ for now (and in all of the plots I'm showing), then

(21) $ \delta A_{zz}^{\mathrm{Stat}} = \frac{\partial A_{zz}}{\partial A_{\mathrm{meas}}^{(2)}} \delta A_{\mathrm{meas}}^{(2)} = \frac{2}{f\cdot P_{zz}} \delta A_{\mathrm{meas}}^{(2)} $
(22) $ \delta A_{\mathrm{meas}}^{(2)} = \sqrt{ \left( \frac{\partial A_{\mathrm{meas}}^{(2)}}{\partial N_{Pol}} \delta N_{Pol} \right)^2 + \left( \frac{\partial A_{\mathrm{meas}}^{(2)}}{\partial N_{u}} \delta N_{u} \right)^2 }$
(23) $ \delta A_{\mathrm{meas}}^{(2)} = \sqrt{ \left( \frac{1}{N_u} \sqrt{N_{Pol}} \right)^2 + \left( -\frac{N_{Pol}}{N_u^2} \sqrt{N_u} \right)^2 }$
(24) $ \delta A_{\mathrm{meas}}^{(2)} = \sqrt{ \frac{N_{Pol}}{N_u^2} + \frac{N_{Pol}^2}{N_u^3} }$

If we assume that $N_{Pol} \approx N_u \approx \frac{N}{2}$, then

(25) $ \delta A_{\mathrm{meas}}^{(2)} = \sqrt{ \frac{N/2}{N^2/4} + \frac{N^2/4}{N^3/8} }$
(25a) $ \delta A_{\mathrm{meas}}^{(2)} = \sqrt{ \frac{2}{N} + \frac{2}{N} }$
(25b) $ \delta A_{\mathrm{meas}}^{(2)} = \frac{2}{\sqrt{N}}$

which would yield

(26) $ \delta A_{zz}^{\mathrm{Stat}} = \frac{2}{f\cdot P_{zz}} \delta A_{\mathrm{meas}}^{(2)} $
(26a) $ \delta A_{zz}^{\mathrm{Stat}} = \frac{2}{f\cdot P_{zz}} \left( \frac{2}{\sqrt{N}} \right) $
(27) $ \delta A_{zz}^{\mathrm{Stat}} = \frac{4}{f\cdot P_{zz}\sqrt{t\cdot R_{\mathrm{Total}}}} $

Using the same formalism that HERMES used (which defines $F_{1_{\mathrm{HERMES}}}^d = \frac{(1 + Q^2/\nu^2)F_2^d}{2x(1+R)}$ with $F_2^d=\frac{F_2^p + F_2^n}{2}$ as a per nucleon quantity, which corresponds to the Bosted that uses per nucleus by $F_{1_{\mathrm{HERMES}}}^d = \frac{F_{1_{\mathrm{Bosted}}}^d}{A_{\mathrm{D}}} = \frac{F_1^d}{2}$ -- as described previously), we can extract $b_1^d$ and its uncertainty by

(18) $ b_1^d = - \frac{3}{2}A_{zz} \left( \frac{F_1^d}{A_{\mathrm{D}}} \right)= - \frac{3}{2}A_{zz} \left( \frac{F_1^d}{2} \right)$
(19) $ \delta b_1^d =\sqrt{ \left(\frac{\partial b_1^d}{\partial A_{zz}} \delta A_{zz} \right)^2 + \left(\frac{\partial b_1^d}{\partial F_1^d} \delta F_1^d \right)^2 }$
(19a) $ \delta b_1^d =\sqrt{ \left[ - \frac{3}{2} \left( \frac{F_1^d}{2} \right)\delta A_{zz} \right]^2 + \left[ - \frac{3}{2} A_{zz} \left( \frac{1}{2} \right)\delta F_1^d \right]^2 }$


Plots with using Azz Method 2 Calculations

2013-05-02-method2.png

Total Rates

Ignoring our W>2 physics cut, then our total rates come out to:

2013-05-02-total-rates.png

Comparing F1 from PDFs and Bosted

Note: For the plots below, Phys Rate = D2 Rate Only

The plot below uses F1 calculated per nucleon from the PDF code, not from the Bosted code.

2013-05-02-pdf-f1.png

If I calculate F1 per nucleon from the Bosted code, I get:


2013-05-02-bosted-f1.png

Removed arbitrary x cuts

Removing arbitrary cuts on x, which were being used previously, increased the rate we can take at each point. Current estimates, where Phys Rate = D2 + N + He rates, are:

2013-05-02-remove-x-cuts.png


--E. Long 20:59, 3 May 2013 (UTC)