Difference between revisions of "Elong-14-04-16"

From HallCWiki
Jump to navigationJump to search
 
(18 intermediate revisions by the same user not shown)
Line 1: Line 1:
 +
=Deuteron Polarization=
 +
 +
Being a spin-1 particle, the deuteron has three spin sub-states that can be filled: $m_J=+1,~m_J=0,~m_J=-1$. For a given quantity of deuterons, the polarization is measured based on the population $p_m$ in each substate. The population is defined as
 +
 +
$p_m=\frac{N_m}{N_1+N_0+N_{-1}}$
 +
 +
where $N_m$ is the number of deuterons in a given substate. In a system of pure deuterons, the normalization of the populations is
 +
 +
$p_1+p_0+p_{-1}=1$.
 +
 +
 +
 +
Vector polarization depends only on the $m_J=\pm 1$ populations, such that
 +
 +
$P_z = p_1 - p_{-1}~$.
 +
 +
It has a range of $-1<P_z<1~$.
 +
 +
If the $m_1$ state is filled, then $p_1=1,~p_{-1}=0,~p_0=0$ and $P_z=1~$.
 +
 +
If the $m_{-1}$ state is filled, then $p_1=0,~p_{-1}=1,~p_0=0$ and $P_z=-1~$.
 +
 +
If the $m_0$ state is filled, then $p_1=0,~p_{-1}=0,~p_0=1$ and $P_z=0~$.
 +
 +
 +
 +
Tensor polarization depends on the combined $m_J=\pm 1$ populations, as well as the $m_J=0$ population such that
 +
 +
$P_{zz} = (p_1 + p_{-1}) - 2p_0~$.
 +
 +
It has a range of $-2<P_{zz}<1~$.
 +
 +
If the $m_1$ and $m_{-1}$ states are filled, then $(p_1 + p_{-1})=1,~p_0=0$ and $P_{zz}=1~$.
 +
 +
If the combined $m_1$ and $m_{-1}$ states equal the $m_0$ state, then $(p_1+p_{-1})=0.5,~p_0=0.5$ and $P_{zz}=-0.5~$
 +
 +
If the $m_0$ state is filled, then $(p_1 + p_{-1})=0,~p_0=1$ and $P_{zz}=-2~$.
 +
 +
[[Image:2014-08-21-Pzz-vs-m0.png|600px]]
 +
 +
Or, in terms of an overly-simplistic animation,
 +
 +
[[Image:2014-08-22-Pzz-animation-food.gif|300px]]
 +
 
=Deuteron Shape=
 
=Deuteron Shape=
  
From the [http://www.phy.anl.gov/theory/movie-run.html video make by S.C. Pieper, et al.], I extracted the tensor and vector polarization frames and made repeating videos of each. When we vector-polarize or tensor-polarize, the probability densities for the deuteron look like:
+
From the [http://www.phy.anl.gov/theory/movie-run.html video made by S.C. Pieper, et al.], I extracted the tensor and vector polarization frames and made repeating videos of each. When we vector-polarize or tensor-polarize, the probability densities for the deuteron look like:
  
 
{|border="1"
 
{|border="1"
! Vector !! Tensor
+
! m_s=&plusmn;1 !! m_s=0
 
|-
 
|-
 
| [[Image:2014-04-16-vector.gif]] || [[Image:2014-04-16-tensor.gif]]
 
| [[Image:2014-04-16-vector.gif]] || [[Image:2014-04-16-tensor.gif]]
 
|-
 
|-
 
|}
 
|}
 +
 +
 +
[[Image:2014-06-23-deuteron-pol.gif]]
  
 
=Tensor Polarization Relation to Vector Polarization=
 
=Tensor Polarization Relation to Vector Polarization=
  
Tensor polarization is related to the vector polarization by <math>P_z=2-\sqrt{4-3P_{zz}^2}</math>
+
Tensor polarization is related to the vector polarization by $P_{zz}=2-\sqrt{4-3P_{z}^2}$
  
 
[[Image:2014-04-16-tensor-vector-plot.png]]
 
[[Image:2014-04-16-tensor-vector-plot.png]]
Line 22: Line 69:
 
the isospin singlet with S=0:
 
the isospin singlet with S=0:
  
:<math>|\uparrow \downarrow> - |\downarrow \uparrow></math> with <math>m_s=0</math>, <math>L=1</math>
+
:$|\uparrow \downarrow> - |\downarrow \uparrow>$ with $m_s=0$, $L=1$
  
 
and the isospin triplet with S=1:
 
and the isospin triplet with S=1:
  
:<math>|\uparrow \uparrow></math> with <math>m_s=+1</math>, <math>L=0</math>
+
:$|\uparrow \uparrow>$ with $m_s=+1$, $L=0$
  
:<math>|\uparrow \downarrow> + |\downarrow \uparrow></math> with <math>m_s=0</math>, <math>L=1</math>
+
:$|\uparrow \downarrow> + |\downarrow \uparrow>$ with $m_s=0$, $L=1$
  
:<math>|\downarrow \downarrow></math> with <math>m_s=-1</math>, <math>L=2</math>
+
:$|\downarrow \downarrow>$ with $m_s=-1$, $L=2$
  
For the deuteron, <math>J=1</math> and <math>P=+1</math>. This kills both of the <math>m_s=0</math> states, since they cannot simultaneously have <math>J=1</math> and <math>P=+1</math> since <math>P=(-1)^L</math>.
+
For the deuteron, $J=1$ and $P=+1$. This kills both of the $m_s=0$ states, since they cannot simultaneously have $J=1$ and $P=+1$ since $P=(-1)^L$.
  
 
This leaves only two possible states:
 
This leaves only two possible states:
  
:<math>|\uparrow \uparrow></math> with <math>m_s=+1</math>, <math>L=0</math>
+
:$|\uparrow \uparrow>$ with $m_s=+1$, $L=0$
  
:<math>|\downarrow \downarrow></math> with <math>m_s=-1</math>, <math>L=2</math>
+
:$|\downarrow \downarrow>$ with $m_s=-1$, $L=2$
  
 
=Angular Momentum Analysis=
 
=Angular Momentum Analysis=
Line 45: Line 92:
  
 
{|class="wikitable" border="1px" align="center" cellpadding="5" cellspacing="0" style="text-align:center;"
 
{|class="wikitable" border="1px" align="center" cellpadding="5" cellspacing="0" style="text-align:center;"
! J !! <math>m_J</math> !! L !! <math>m_L</math> !! S !! <math>m_S</math> !! <math>\pi = -1^L</math> !! T !! <math>^{2S+1}L_J</math>
+
! J !! $m_J$ !! L !! $m_L$ !! S !! $m_S$ !! $\pi = -1^L$ !! T !! $^{2S+1}L_J$
 
|-
 
|-
| 0 || 0 || 0 || 0 || 1 || 0 || + || 1 || <math>^1 S_0</math>
+
| 0 || 0 || 0 || 0 || 1 || 0 || + || 1 || $^1 S_0$
 
|-
 
|-
! 1 || &plusmn;1 !! 0 || 0 !! 1 || &plusmn;1 !! + !! 0 !! <math>^3 S_1</math>
+
! 1 || &plusmn;1 !! 0 || 0 !! 1 || &plusmn;1 !! + !! 0 !! $^3 S_1$
 
|-
 
|-
| 1 || 1 || 2 || 1 || 1 || 0 || - || 0 || <math>^1 P_1</math>
+
| 1 || 1 || 2 || 1 || 1 || 0 || - || 0 || $^1 P_1$
 
|-
 
|-
| 1 || 0 || 2 || -1 || 1 || 1 || - || 1 || <math>^3 P_0</math>
+
| 1 || 0 || 2 || -1 || 1 || 1 || - || 1 || $^3 P_0$
 
|-
 
|-
| 1 || 0 || 2 || 1 || 1 || -1 || - || 1 || <math>^3 P_0</math>
+
| 1 || 0 || 2 || 1 || 1 || -1 || - || 1 || $^3 P_0$
 
|-
 
|-
| 1 || 1 || 2 || 1 || 1 || 0 || - || 1 || <math>^3 P_1</math>
+
| 1 || 1 || 2 || 1 || 1 || 0 || - || 1 || $^3 P_1$
 
|-
 
|-
| 1 || 2 || 2 || 1 || 1 || 1 || - || 1 || <math>^3 P_2</math>
+
| 1 || 2 || 2 || 1 || 1 || 1 || - || 1 || $^3 P_2$
 
|-
 
|-
| 1 || 2 || 2 || 2 || 1 || 0 || + || 1 || <math>^1 D_2</math>
+
| 1 || 2 || 2 || 2 || 1 || 0 || + || 1 || $^1 D_2$
 
|-
 
|-
! 1 !! 1 !! 2 !! 2 !! 1 || -1 !! + !! 0 !! <math>^3 D_1</math>
+
! 1 !! 1 !! 2 !! 2 !! 1 || -1 !! + !! 0 !! $^3 D_1$
 
|-
 
|-
! 1 !! -1 !! 2 !! -2 !! 1 || +1 !! + !! 0 !! <math>^3 D_1</math>
+
! 1 !! -1 !! 2 !! -2 !! 1 || +1 !! + !! 0 !! $^3 D_1$
 
|-
 
|-
| 3 || 3 || 2 || 2 || 1 || 1 || + || 0 || <math>^3 D_2</math>
+
| 3 || 3 || 2 || 2 || 1 || 1 || + || 0 || $^3 D_2$
 
|-
 
|-
| 3 || 3 || 2 || 2 || 1 || 1 || + || 0 || <math>^3 D_3</math>
+
| 3 || 3 || 2 || 2 || 1 || 1 || + || 0 || $^3 D_3$
 
|-
 
|-
 
|}
 
|}
Line 76: Line 123:
  
 
{|class="wikitable" border="1px" align="center" cellpadding="5" cellspacing="0" style="text-align:center;"
 
{|class="wikitable" border="1px" align="center" cellpadding="5" cellspacing="0" style="text-align:center;"
! J !! <math>m_J</math> !! L !! <math>m_L</math> !! S !! <math>m_S</math> !! <math>\pi = -1^L</math> !! T !! <math>^{2S+1}L_J</math>
+
! J !! $m_J$ !! L !! $m_L$ !! S !! $m_S$ !! $\pi = -1^L$ !! T !! $^{2S+1}L_J$
 
|-
 
|-
| 1 || &plusmn;1 || 0 || 0 || 1 || &plusmn;1 || + || 0 || <math>^3 S_1</math>
+
| 1 || &plusmn;1 || 0 || 0 || 1 || &plusmn;1 || + || 0 || $^3 S_1$
 
|-
 
|-
| 1 || 1 || 2 || 2 || 1 || -1 || + || 0 || <math>^3 D_1</math>
+
| 1 || 1 || 2 || 2 || 1 || -1 || + || 0 || $^3 D_1$
 
|-
 
|-
| 1 || -1 || 2 || -2 || 1 || +1 || + || 0 || <math>^3 D_1</math>
+
| 1 || -1 || 2 || -2 || 1 || +1 || + || 0 || $^3 D_1$
 
|-
 
|-
 
|}
 
|}

Latest revision as of 16:24, 5 September 2024

Deuteron Polarization

Being a spin-1 particle, the deuteron has three spin sub-states that can be filled: $m_J=+1,~m_J=0,~m_J=-1$. For a given quantity of deuterons, the polarization is measured based on the population $p_m$ in each substate. The population is defined as

$p_m=\frac{N_m}{N_1+N_0+N_{-1}}$

where $N_m$ is the number of deuterons in a given substate. In a system of pure deuterons, the normalization of the populations is

$p_1+p_0+p_{-1}=1$.


Vector polarization depends only on the $m_J=\pm 1$ populations, such that

$P_z = p_1 - p_{-1}~$.

It has a range of $-1<P_z<1~$.

If the $m_1$ state is filled, then $p_1=1,~p_{-1}=0,~p_0=0$ and $P_z=1~$.

If the $m_{-1}$ state is filled, then $p_1=0,~p_{-1}=1,~p_0=0$ and $P_z=-1~$.

If the $m_0$ state is filled, then $p_1=0,~p_{-1}=0,~p_0=1$ and $P_z=0~$.


Tensor polarization depends on the combined $m_J=\pm 1$ populations, as well as the $m_J=0$ population such that

$P_{zz} = (p_1 + p_{-1}) - 2p_0~$.

It has a range of $-2<P_{zz}<1~$.

If the $m_1$ and $m_{-1}$ states are filled, then $(p_1 + p_{-1})=1,~p_0=0$ and $P_{zz}=1~$.

If the combined $m_1$ and $m_{-1}$ states equal the $m_0$ state, then $(p_1+p_{-1})=0.5,~p_0=0.5$ and $P_{zz}=-0.5~$

If the $m_0$ state is filled, then $(p_1 + p_{-1})=0,~p_0=1$ and $P_{zz}=-2~$.

2014-08-21-Pzz-vs-m0.png

Or, in terms of an overly-simplistic animation,

2014-08-22-Pzz-animation-food.gif

Deuteron Shape

From the video made by S.C. Pieper, et al., I extracted the tensor and vector polarization frames and made repeating videos of each. When we vector-polarize or tensor-polarize, the probability densities for the deuteron look like:

m_s=±1 m_s=0
2014-04-16-vector.gif 2014-04-16-tensor.gif


2014-06-23-deuteron-pol.gif

Tensor Polarization Relation to Vector Polarization

Tensor polarization is related to the vector polarization by $P_{zz}=2-\sqrt{4-3P_{z}^2}$

2014-04-16-tensor-vector-plot.png

Deuteron States

From basic quantum mechanics, we know that the possible states for 2 nucleons are

the isospin singlet with S=0:

$|\uparrow \downarrow> - |\downarrow \uparrow>$ with $m_s=0$, $L=1$

and the isospin triplet with S=1:

$|\uparrow \uparrow>$ with $m_s=+1$, $L=0$
$|\uparrow \downarrow> + |\downarrow \uparrow>$ with $m_s=0$, $L=1$
$|\downarrow \downarrow>$ with $m_s=-1$, $L=2$

For the deuteron, $J=1$ and $P=+1$. This kills both of the $m_s=0$ states, since they cannot simultaneously have $J=1$ and $P=+1$ since $P=(-1)^L$.

This leaves only two possible states:

$|\uparrow \uparrow>$ with $m_s=+1$, $L=0$
$|\downarrow \downarrow>$ with $m_s=-1$, $L=2$

Angular Momentum Analysis

Now, let's look at each of these a bit more indepth according to their angular momentum components

J $m_J$ L $m_L$ S $m_S$ $\pi = -1^L$ T $^{2S+1}L_J$
0 0 0 0 1 0 + 1 $^1 S_0$
1 ±1 0 0 1 ±1 + 0 $^3 S_1$
1 1 2 1 1 0 - 0 $^1 P_1$
1 0 2 -1 1 1 - 1 $^3 P_0$
1 0 2 1 1 -1 - 1 $^3 P_0$
1 1 2 1 1 0 - 1 $^3 P_1$
1 2 2 1 1 1 - 1 $^3 P_2$
1 2 2 2 1 0 + 1 $^1 D_2$
1 1 2 2 1 -1 + 0 $^3 D_1$
1 -1 2 -2 1 +1 + 0 $^3 D_1$
3 3 2 2 1 1 + 0 $^3 D_2$
3 3 2 2 1 1 + 0 $^3 D_3$

When we remove all of the states that can't exist, we're left with two mentioned in the last section:

J $m_J$ L $m_L$ S $m_S$ $\pi = -1^L$ T $^{2S+1}L_J$
1 ±1 0 0 1 ±1 + 0 $^3 S_1$
1 1 2 2 1 -1 + 0 $^3 D_1$
1 -1 2 -2 1 +1 + 0 $^3 D_1$

S and D States

A variety of models have looked at the wavefunction from the S- and D-states.

2014-04-24-deuteron-wavefunction-s-d-states.png

File:2014-04-24-deuteron-wavefunction-s-d-states.pdf


--E. Long 19:53, 24 April 2014 (UTC)