Difference between revisions of "Elong-14-04-16"
From HallCWiki
Jump to navigationJump to search (New page: =Deuteron Shape= From the [http://www.phy.anl.gov/theory/movie-run.html video make by S.C. Pieper, et al.], I extracted the tensor and vector polarization frames and made repeating videos...) |
|||
Line 1: | Line 1: | ||
=Deuteron Shape= | =Deuteron Shape= | ||
− | From the [http://www.phy.anl.gov/theory/movie-run.html video make by S.C. Pieper, et al.], I extracted the tensor and vector polarization frames and made repeating videos of each | + | From the [http://www.phy.anl.gov/theory/movie-run.html video make by S.C. Pieper, et al.], I extracted the tensor and vector polarization frames and made repeating videos of each. When we vector-polarize or tensor-polarize, the probability densities for the deuteron look like: |
{|border="1" | {|border="1" | ||
Line 7: | Line 7: | ||
|- | |- | ||
| [[Image:2014-04-16-vector.gif]] || [[Image:2014-04-16-tensor.gif]] | | [[Image:2014-04-16-vector.gif]] || [[Image:2014-04-16-tensor.gif]] | ||
+ | |- | ||
+ | |} | ||
+ | |||
+ | =Deuteron States= | ||
+ | |||
+ | From basic quantum mechanics, we know that the possible states for 2 nucleons are | ||
+ | |||
+ | the isospin singlet with S=0: | ||
+ | |||
+ | :<math>|\uparrow \downarrow> - |\downarrow \uparrow></math> with <math>m_s=0</math>, <math>L=1</math> | ||
+ | |||
+ | and the isospin triplet with S=1: | ||
+ | |||
+ | :<math>|\uparrow \uparrow></math> with <math>m_s=+1</math>, <math>L=0</math> | ||
+ | |||
+ | :<math>|\uparrow \downarrow> + |\downarrow \uparrow></math> with <math>m_s=0</math>, <math>L=1</math> | ||
+ | |||
+ | :<math>|\downarrow \downarrow></math> with <math>m_s=-1</math>, <math>L=2</math> | ||
+ | |||
+ | For the deuteron, <math>J=1</math> and <math>P=+1</math>. This kills both of the <math>m_s=0</math> states, since they cannot simultaneously have <math>J=1</math> and <math>P=+1</math> since <math>P=(-1)^L</math>. | ||
+ | |||
+ | This leaves only two possible states: | ||
+ | |||
+ | :<math>|\uparrow \uparrow></math> with <math>m_s=+1</math>, <math>L=0</math> | ||
+ | |||
+ | :<math>|\downarrow \downarrow></math> with <math>m_s=-1</math>, <math>L=2</math> | ||
+ | |||
+ | =Angular Momentum Analysis= | ||
+ | |||
+ | Now, let's look at each of these a bit more indepth according to their angular momentum components | ||
+ | |||
+ | {|border="1px" align="center" cellpadding="10" cellspacing="0" | ||
+ | ! State !! <math>J</math> !! <math>m_j</math> !! <math>L</math> !! <math>m_l</math> !! <math>S</math> !! <math>m_s</math> | ||
+ | |- | ||
+ | | <math>|\uparrow \uparrow></math> (S-wave, 96%) || 1 || +1 || 0 || 0 || 1 || +1 | ||
+ | |- | ||
+ | | <math>|\uparrow \uparrow></math> (S-wave, 96%) || 1 || 0 || 0 || 0 || 1 || 0 | ||
+ | |- | ||
+ | | <math>|\uparrow \uparrow></math> (S-wave, 96%) || 1 || -1 || 0 || 0 || 1 || -1 | ||
+ | |- | ||
+ | | | ||
+ | |- | ||
+ | | <math>|\downarrow \downarrow></math> (D-wave, 4%) || 1 || +1 || 2 || +2 || 1 || -1 | ||
+ | |- | ||
+ | | <math>|\downarrow \downarrow></math> (D-wave, 4%) || 1 || +1 || 2 || +1 || 1 || 0 | ||
+ | |- | ||
+ | | <math>|\downarrow \downarrow></math> (D-wave, 4%) || 1 || 0 || 2 || +1 || 1 || -1 | ||
+ | |- | ||
+ | | <math>|\downarrow \downarrow></math> (D-wave, 4%) || 1 || +1 || 2 || 0 || 1 || +1 | ||
+ | |- | ||
+ | | <math>|\downarrow \downarrow></math> (D-wave, 4%) || 1 || 0 || 2 || 0 || 1 || 0 | ||
+ | |- | ||
+ | | <math>|\downarrow \downarrow></math> (D-wave, 4%) || 1 || -1 || 2 || 0 || 1 || -1 | ||
+ | |- | ||
+ | | <math>|\downarrow \downarrow></math> (D-wave, 4%) || 1 || -1 || 2 || -1 || 1 || 0 | ||
+ | |- | ||
+ | | <math>|\downarrow \downarrow></math> (D-wave, 4%) || 1 || 0 || 2 || -1 || 1 || +1 | ||
+ | |- | ||
+ | | <math>|\downarrow \downarrow></math> (D-wave, 4%) || 1 || +1 || 2 || -2 || 1 || +1 | ||
|- | |- | ||
|} | |} |
Revision as of 16:26, 16 April 2014
Deuteron Shape
From the video make by S.C. Pieper, et al., I extracted the tensor and vector polarization frames and made repeating videos of each. When we vector-polarize or tensor-polarize, the probability densities for the deuteron look like:
Vector | Tensor |
---|---|
Deuteron States
From basic quantum mechanics, we know that the possible states for 2 nucleons are
the isospin singlet with S=0:
- <math>|\uparrow \downarrow> - |\downarrow \uparrow></math> with <math>m_s=0</math>, <math>L=1</math>
and the isospin triplet with S=1:
- <math>|\uparrow \uparrow></math> with <math>m_s=+1</math>, <math>L=0</math>
- <math>|\uparrow \downarrow> + |\downarrow \uparrow></math> with <math>m_s=0</math>, <math>L=1</math>
- <math>|\downarrow \downarrow></math> with <math>m_s=-1</math>, <math>L=2</math>
For the deuteron, <math>J=1</math> and <math>P=+1</math>. This kills both of the <math>m_s=0</math> states, since they cannot simultaneously have <math>J=1</math> and <math>P=+1</math> since <math>P=(-1)^L</math>.
This leaves only two possible states:
- <math>|\uparrow \uparrow></math> with <math>m_s=+1</math>, <math>L=0</math>
- <math>|\downarrow \downarrow></math> with <math>m_s=-1</math>, <math>L=2</math>
Angular Momentum Analysis
Now, let's look at each of these a bit more indepth according to their angular momentum components
State | <math>J</math> | <math>m_j</math> | <math>L</math> | <math>m_l</math> | <math>S</math> | <math>m_s</math> |
---|---|---|---|---|---|---|
\uparrow \uparrow></math> (S-wave, 96%) | 1 | +1 | 0 | 0 | 1 | +1 |
\uparrow \uparrow></math> (S-wave, 96%) | 1 | 0 | 0 | 0 | 1 | 0 |
\uparrow \uparrow></math> (S-wave, 96%) | 1 | -1 | 0 | 0 | 1 | -1 |
\downarrow \downarrow></math> (D-wave, 4%) | 1 | +1 | 2 | +2 | 1 | -1 |
\downarrow \downarrow></math> (D-wave, 4%) | 1 | +1 | 2 | +1 | 1 | 0 |
\downarrow \downarrow></math> (D-wave, 4%) | 1 | 0 | 2 | +1 | 1 | -1 |
\downarrow \downarrow></math> (D-wave, 4%) | 1 | +1 | 2 | 0 | 1 | +1 |
\downarrow \downarrow></math> (D-wave, 4%) | 1 | 0 | 2 | 0 | 1 | 0 |
\downarrow \downarrow></math> (D-wave, 4%) | 1 | -1 | 2 | 0 | 1 | -1 |
\downarrow \downarrow></math> (D-wave, 4%) | 1 | -1 | 2 | -1 | 1 | 0 |
\downarrow \downarrow></math> (D-wave, 4%) | 1 | 0 | 2 | -1 | 1 | +1 |
\downarrow \downarrow></math> (D-wave, 4%) | 1 | +1 | 2 | -2 | 1 | +1 |