Difference between revisions of "Elong-13-05-01"

From HallCWiki
Jump to: navigation, search
(Cross-Section Issue - Fixed)
 
(40 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
==Cross-Section Issue - Fixed==
 
==Cross-Section Issue - Fixed==
 
From looking at the dilution factor, ''f'', I found a problem with how the cross-sections were calculated. We know that, naively,<br>
 
From looking at the dilution factor, ''f'', I found a problem with how the cross-sections were calculated. We know that, naively,<br>
<math>f=\frac{N_{D}}{(N_{D}+N_{N}+N_{He})} = \frac{t\cdot R_{D}}{(t\cdot R_{D}+t\cdot R_{N}+t\cdot R_{He})} = \frac{R_{D}}{(R_{D}+R_{N}+R_{He})} \approx \frac{N_{D}}{N_{D}+N_{N}}\approx \frac{3\sigma_{D}}{3\sigma_{D}+\sigma{N}}\approx \frac{3\cdot 2}{3\cdot 2 + 14}\approx 6/20=0.3</math>.<br>
+
$f=\frac{N_{D}}{(N_{D}+N_{N}+N_{He})} = \frac{t\cdot R_{D}}{(t\cdot R_{D}+t\cdot R_{N}+t\cdot R_{He})} = \frac{R_{D}}{(R_{D}+R_{N}+R_{He})} \approx \frac{N_{D}}{N_{D}+N_{N}}\approx \frac{3\sigma_{D}}{3\sigma_{D}+\sigma{N}}\approx \frac{3\cdot 2}{3\cdot 2 + 14}\approx 6/20=0.3$.<br>
 
<br>
 
<br>
 
Originally, I was (wrongly) using
 
Originally, I was (wrongly) using
<math>\frac{d^2\sigma^u}{d\Omega dE'} = \left( \frac{d\sigma}{d\Omega} \right) _{\mathrm{Mott}} \left[ \frac{2\cdot \left(\frac{F_1^{X}}{A_X} \right)}{m_{X}}\tan^2\left( \frac{\theta_{e'}}{2} \right) + \frac{\left( \frac{F_2^X}{A_X}\right) }{\nu} \right]</math><br><br>
+
$\frac{d^2\sigma^u}{d\Omega dE'} = \left( \frac{d\sigma}{d\Omega} \right) _{\mathrm{Mott}} \left[ \frac{2\cdot \left(\frac{F_1^{X}}{A_X} \right)}{m_{X}}\tan^2\left( \frac{\theta_{e'}}{2} \right) + \frac{\left( \frac{F_2^X}{A_X}\right) }{\nu} \right]$<br><br>
where ''X'' = nucleus and <math>\left( \frac{d\sigma}{d\Omega} \right) _{\mathrm{Mott}}=\frac{Z^2 \alpha^2 \hbar^2 c^2}{4E^2\sin^4\left( \frac{\theta}{2} \right)}\cos^2\left( \frac{\theta}{2} \right)</math>.<br>
+
where ''X'' = nucleus and $\left( \frac{d\sigma}{d\Omega} \right) _{\mathrm{Mott}}=\frac{Z^2 \alpha^2 \hbar^2 c^2}{4E^2\sin^4\left( \frac{\theta}{2} \right)}\cos^2\left( \frac{\theta}{2} \right)$.<br>
This gave <math>f \approx 0.062</math>.
+
This gave $f \approx 0.062$.
  
 
The problem came from using a nuclear Mott cross-section but a nucleon structure cross-section. To fix this, I first found the Mott cross-section for a proton,<br>
 
The problem came from using a nuclear Mott cross-section but a nucleon structure cross-section. To fix this, I first found the Mott cross-section for a proton,<br>
<math>\left( \frac{d\sigma}{d\Omega} \right) _{\mathrm{Mott}_{\mathrm{p}}}=\frac{1^2 \alpha^2 \hbar^2 c^2}{4E^2\sin^4\left( \frac{\theta}{2} \right)}\cos^2\left( \frac{\theta}{2} \right)</math>,<br>
+
$\left( \frac{d\sigma}{d\Omega} \right) _{\mathrm{Mott}_{\mathrm{p}}}=\frac{1^2 \alpha^2 \hbar^2 c^2}{4E^2\sin^4\left( \frac{\theta}{2} \right)}\cos^2\left( \frac{\theta}{2} \right)$,<br>
  
 
and then multiplied that by the structure cross-section at the total number of nucleons,
 
and then multiplied that by the structure cross-section at the total number of nucleons,
  
<math>\frac{d^2\sigma^u}{d\Omega dE'} = A_X \left( \frac{d\sigma}{d\Omega} \right) _{\mathrm{Mott}_{\mathrm{p}}} \left[ \frac{2\cdot \left(\frac{F_1^{X}}{A_X} \right)}{m_{X}}\tan^2\left( \frac{\theta_{e'}}{2} \right) + \frac{\left( \frac{F_2^X}{A_X}\right) }{\nu} \right]</math>.<br>
+
$\frac{d^2\sigma^u}{d\Omega dE'} = A_X \left( \frac{d\sigma}{d\Omega} \right) _{\mathrm{Mott}_{\mathrm{p}}} \left[ \frac{2\cdot \left(\frac{F_1^{X}}{A_X} \right)}{m_{p}}\tan^2\left( \frac{\theta_{e'}}{2} \right) + \frac{\left( \frac{F_2^X}{A_X}\right) }{\nu} \right]$.<br>
  
This gave <math>f \approx \frac{3\sigma_{D}}{3\sigma_{D}+\sigma{N}} \approx 0.29</math>, as expected.
+
This gave $f \approx \frac{3\sigma_{D}}{3\sigma_{D}+\sigma{N}} \approx 0.29$, as expected.
  
Plugging all this into the rates code gave<br>
+
Plugging all this into the rates code gave ('''NOTE: The error on ''b<sub>1</sub><sup>d</sup>'' is wrong, as [[Elong-13-05-01#Matching_HERMES_F1d.2C_dAzzd.2C_and_db1d|discussed below]]'''):<br>
 
[[Image:2013-05-01-fixed-cs.png]]
 
[[Image:2013-05-01-fixed-cs.png]]
 +
 +
==Matching HERMES F<sub>1</sub><sup>d</sup>, dA<sub>zz</sub><sup>d</sup>, and db<sub>1</sub><sup>d</sup>==
 +
I wanted to double-check the code against the HERMES data, but this required a few extra steps. First, using the values for $A_{zz}^d$ and $b_{1}^d$ that they measured, along with the formula $b_1^d = -\frac{3}{2}A^d_{zz}F^d_1$, I found what they were using for $F^d_1$. The $F^d_1$ they're using is per nucleon, and for HERMES' two highest ''x'' points (the rest are inaccessible to the Bosted code because for 0.012<''x''<0.063, 16.75<''W''<sup>2</sup><42.87, which is outside the ''W'' range that the code can handle) they match the code relatively well:
 +
 +
{| class="wikitable" style="text-align:center; border-collapse:collapse;" border="1"
 +
| style="width: 100px;" | <''x''> || style="width: 100px;" | ''Q''<sup> 2</sup> || style="width: 100px;" | HERMES $F_1^d$ || style="width: 100px;" | Bosted $\frac{F_1^d}{A_d}$
 +
|-
 +
| 0.128 || 2.33 || 1.018 || 0.620 (Outside Bosted "Good" range)
 +
|-
 +
| 0.248 || 3.11 || 0.496 || 0.486
 +
|-
 +
| 0.452 || 4.69 || 0.161 || 0.171
 +
|-
 +
|}
 +
 +
This means that the way I was calculating the error $\delta b_1^d=\frac{3}{2}\delta A_{zz}^d F_1^d$ was off by a factor of $A_d=2$. This was corrected.
 +
 +
I also [[Elong-13-05-01-HERMES-Match|played a bit with the statistics, trying to match the HERMES results]]. However, that's a very quick estimate of trying to use the SMHS to copy the HERMES detector, and so the entire link should be taken with a huge grain of salt.
 +
 +
==Fixed Rates Code==
 +
Now that everything is working as it should, I've replotted the lowest three <''x''> points where we can spend 4 weeks taking data. Since the HMS can't get into the range we need for $F_1^d$, I've removed those calculations. The results (on a re-worked scale to emphasize their value) are:<br>
 +
[[Image: 2013-05-01-rates-fixed.png]]
 +
 +
Where
 +
::{| class="wikitable" style="text-align:center; border-collapse:collapse;" border="1"
 +
| style="width: 200px;" | Target Material || style="width: 200px;" | ND3
 +
|-
 +
| Target Length || 3 cm
 +
|-
 +
| ''f<sub>dil</sub>'' || Calculated ~ 0.3
 +
|-
 +
| ''p<sub>f</sub>'' || 0.65
 +
|-
 +
| ''P<sub>zz</sub>'' || 20%
 +
|-
 +
| ''E''<sub>0</sub> || 11 GeV
 +
|-
 +
| ''x<sub>Bjorken</sub>'' || 0.1, 0.3, 0.5
 +
|-
 +
| ''Q''<sup>2</sup> || Variable
 +
|-
 +
| ''θ<sub>q</sub>'' || Calculated
 +
|-
 +
| ''θ<sub>e'</sub>'' || Calculated
 +
|-
 +
| ''E''' || Calculated
 +
|-
 +
| ''W'' || Calculated
 +
|-
 +
|}
 +
 +
==''A<sub>zz</sub>'' Formalism==
 +
Just for clarification, I'm using the formalism as described below.
 +
 +
::{| class="wikitable" style="text-align:center; border-collapse:collapse;" border="1"
 +
| style="width: 200px;" | Target Material = ND3
 +
|-
 +
| $z_{\mathrm{tgt}} = 3\mathrm{ cm}$
 +
|-
 +
| $p_f = 0.65$
 +
|-
 +
| $P_{zz} = 20\%$
 +
|-
 +
| $N_{A} = 6.0221413\cdot 10^{23}$
 +
|-
 +
| $\rho_{\mathrm{He}} = 0.1412 \mathrm{g/cm}^3$
 +
|-
 +
| $M_{\mathrm{He}} = 4.0026 \mathrm{g/mole}$
 +
|-
 +
| $\rho_{\mathrm{ND}_3} = 1.007 \mathrm{g/cm}^3$
 +
|-
 +
| $M_{\mathrm{ND}_3} = 20 \mathrm{g/mole}$
 +
|-
 +
| $I_{\mathrm{beam}} = 0.115 \mathrm{\mu A}$
 +
|-
 +
| $\delta F_1^d = 5\%$
 +
|-
 +
|}
 +
 +
 +
 +
{| class="wikitable" style="text-align:center; width:800px;" border="0"
 +
|style="width: 50px; height: 65px;" |(1) || $R_{\mathrm{Total}} = \mathcal{A}\left[ \mathcal{L}_{\mathrm{He}}\left( \frac{d^2\sigma_{\mathrm{He}}^u}{d\Omega dE'}\right) + \mathcal{L}_{\mathrm{N}}\left( \frac{d^2\sigma_{\mathrm{N}}^u}{d\Omega dE'}\right) + \mathcal{L}_{\mathrm{D}}\left( \frac{d^2\sigma_{\mathrm{D}}}{d\Omega dE'}\right) \right]$
 +
|-
 +
|style="width: 50px; height: 65px;" |(2) || $R_{\mathrm{Total}}  = \mathcal{A}\left[ \mathcal{L}_{\mathrm{He}}\left( \frac{d^2\sigma_{\mathrm{He}}^u}{d\Omega dE'}\right) + \mathcal{L}_{\mathrm{N}}\left( \frac{d^2\sigma_{\mathrm{N}}^u}{d\Omega dE'}\right) + \mathcal{L}_{\mathrm{D}}\left( \frac{d^2\sigma_{\mathrm{D}}^u}{d\Omega dE'}\left[ 1 + \frac{1}{2}P_{zz}A_{zz}^d \right]\right) \right]  $
 +
|-
 +
|style="width: 50px; height: 65px;" |(2a) || $R_{\mathrm{Total}}  = \mathcal{A}\left[ \mathcal{L}_{\mathrm{He}} \sigma_{\mathrm{He}}^u  + \mathcal{L}_{\mathrm{N}} \sigma_{\mathrm{N}}^u + \mathcal{L}_{\mathrm{D}} \sigma_{\mathrm{D}}^u\left( 1 + \frac{1}{2}P_{zz}A_{zz}^d \right) \right]  $
 +
|}
 +
where <br>
 +
{| class="wikitable" style="text-align:center; width:800px;" border="0"
 +
|style="width: 50px; height: 65px;" |(3) || $\mathcal{A} = \left( \Delta\Omega \Delta E' \right)$
 +
|-
 +
|style="width: 50px; height: 65px;" |(4) || $\mathcal{L}_{\mathrm{He}} = \left[ \mathcal{N}_A  \frac{\rho_{\mathrm{He}}}{M_{\mathrm{He}}}\left(1 - p_f\right) \right] \cdot \left( \frac{I_{\mathrm{beam}}}{e} \right) \cdot z_{\mathrm{tgt}}$
 +
|-
 +
|style="width: 50px; height: 65px;" |(5) || $\mathcal{L}_{\mathrm{N}} = \left[ \mathcal{N}_A  \frac{\rho_{\mathrm{ND}_3}}{M_{\mathrm{ND}_3}} p_f \right] \cdot \left( \frac{I_{\mathrm{beam}}}{e} \right) \cdot z_{\mathrm{tgt}}$
 +
|-
 +
|style="width: 50px; height: 65px;" |(6) || $\mathcal{L}_{\mathrm{D}} = 3\left[ \mathcal{N}_A  \frac{\rho_{\mathrm{ND}_3}}{M_{\mathrm{ND}_3}} p_f \right] \cdot \left( \frac{I_{\mathrm{beam}}}{e} \right) \cdot z_{\mathrm{tgt}}$
 +
|-
 +
|style="width: 50px; height: 85px;" |(7) || $\sigma^u_X = \frac{d^2\sigma^u_X}{d\Omega dE'} = A_X \left( \frac{d\sigma}{d\Omega} \right) _{\mathrm{Mott}_{\mathrm{p}}} \left[ \frac{2\cdot \left(\frac{F_1^{X}}{A_X} \right)}{m_{p}}\tan^2\left( \frac{\theta_{e'}}{2} \right) + \frac{\left( \frac{F_2^X}{A_X}\right) }{\nu} \right]$
 +
|-
 +
|style="width: 50px; height: 65px;" |(8) || $\left( \frac{d\sigma}{d\Omega} \right) _{\mathrm{Mott}_{\mathrm{p}}}=\frac{1^2 \alpha^2 \hbar^2 c^2}{4E^2\sin^4\left( \frac{\theta}{2} \right)}\cos^2\left( \frac{\theta}{2} \right)$
 +
|-
 +
|style="width: 50px; height: 65px;" |(9) || $\sigma_D = \frac{d^2\sigma_{\mathrm{D}}}{d\Omega dE'} = \frac{d^2\sigma_{\mathrm{D}}^u}{d\Omega dE'}\left[ 1 + \frac{1}{2}P_{zz}A_{zz}^d \right] $
 +
|-
 +
|}
 +
 +
Then
 +
 +
{| class="wikitable" style="text-align:center; width:800px;" border="0"
 +
|style="width: 50px; height: 65px;" |(10) || $R^+_{\mathrm{Total}} - R^-_{\mathrm{Total}} = \mathcal{A}\left[ \mathcal{L}_{\mathrm{He}} \sigma_{\mathrm{He}}^u  + \mathcal{L}_{\mathrm{N}} \sigma_{\mathrm{N}}^u + \mathcal{L}_{\mathrm{D}} \sigma_{\mathrm{D}}^u\left( 1 + \frac{1}{2}P_{zz}^+ A_{zz}^d \right) \right] - \mathcal{A}\left[ \mathcal{L}_{\mathrm{He}} \sigma_{\mathrm{He}}^u  + \mathcal{L}_{\mathrm{N}} \sigma_{\mathrm{N}}^u + \mathcal{L}_{\mathrm{D}} \sigma_{\mathrm{D}}^u\left( 1 + \frac{1}{2}P_{zz}^- A_{zz}^d \right) \right]  $
 +
|-
 +
|style="width: 50px; height: 65px;" |(10a) || $R^+_{\mathrm{Total}} - R^-_{\mathrm{Total}} = \mathcal{A}\mathcal{L}_{\mathrm{D}}\sigma_{\mathrm{D}}^u \frac{1}{2}A_{zz} \left[ P_{zz}^+ - P_{zz}^- \right]$
 +
|-
 +
|style="width: 50px; height: 65px;" |(11) || $R^+_{\mathrm{Total}} + R^-_{\mathrm{Total}} = \mathcal{A}\left[ \mathcal{L}_{\mathrm{He}} \sigma_{\mathrm{He}}^u  + \mathcal{L}_{\mathrm{N}} \sigma_{\mathrm{N}}^u + \mathcal{L}_{\mathrm{D}} \sigma_{\mathrm{D}}^u\left( 1 + \frac{1}{2}P_{zz}^+ A_{zz}^d \right) \right] + \mathcal{A}\left[ \mathcal{L}_{\mathrm{He}} \sigma_{\mathrm{He}}^u  + \mathcal{L}_{\mathrm{N}} \sigma_{\mathrm{N}}^u + \mathcal{L}_{\mathrm{D}} \sigma_{\mathrm{D}}^u\left( 1 + \frac{1}{2}P_{zz}^- A_{zz}^d \right) \right]  $
 +
|-
 +
|style="width: 50px; height: 65px;" |(11a) || $R^+_{\mathrm{Total}} + R^-_{\mathrm{Total}} = 2\mathcal{A}\left[ \mathcal{L}_{\mathrm{He}} \sigma_{\mathrm{He}}^u  + \mathcal{L}_{\mathrm{N}} \sigma_{\mathrm{N}}^u + \mathcal{L}_{\mathrm{D}} \sigma_{\mathrm{D}}^u \right] + \mathcal{A}\mathcal{L}_{\mathrm{D}} \sigma_{\mathrm{D}}^u\left[ \frac{1}{2}P_{zz}^+ A_{zz}^d + \frac{1}{2}P_{zz}^- A_{zz}^d \right]  $
 +
|-
 +
|}
 +
 +
If we assume that $P_{zz}^+ = -P_{zz}^- = P_{zz}$, then
 +
 +
{| class="wikitable" style="text-align:center; width:800px;" border="0"
 +
|style="width: 50px; height: 65px;" |(12) || $R^+_{\mathrm{Total}} - R^-_{\mathrm{Total}} = \mathcal{A}\mathcal{L}_{\mathrm{D}}\sigma_{\mathrm{D}}^u A_{zz}  P_{zz}$
 +
|-
 +
|style="width: 50px; height: 65px;" |(13) || $R^+_{\mathrm{Total}} + R^-_{\mathrm{Total}} = 2\mathcal{A}\left[ \mathcal{L}_{\mathrm{He}} \sigma_{\mathrm{He}}^u  + \mathcal{L}_{\mathrm{N}} \sigma_{\mathrm{N}}^u + \mathcal{L}_{\mathrm{D}} \sigma_{\mathrm{D}}^u \right] $
 +
|-
 +
|style="width: 50px; height: 65px;" |(14) || $A_{\mathrm{meas}} = \frac{R^+_{\mathrm{Total}} - R^-_{\mathrm{Total}}}{R^+_{\mathrm{Total}} + R^-_{\mathrm{Total}}}$
 +
|-
 +
|style="width: 50px; height: 65px;" |(14a) || $A_{\mathrm{meas}} = \frac{\mathcal{L}_{\mathrm{D}}\sigma_{\mathrm{D}}^u A_{zz}  P_{zz}}{2\left[ \mathcal{L}_{\mathrm{He}} \sigma_{\mathrm{He}}^u  + \mathcal{L}_{\mathrm{N}} \sigma_{\mathrm{N}}^u + \mathcal{L}_{\mathrm{D}} \sigma_{\mathrm{D}}^u \right]}$
 +
|-
 +
|style="width: 50px; height: 65px;" |(14b) || $A_{\mathrm{meas}} = \left( \frac{\mathcal{L}_{\mathrm{D}}\sigma_{\mathrm{D}}^u}{\mathcal{L}_{\mathrm{He}} \sigma_{\mathrm{He}}^u  + \mathcal{L}_{\mathrm{N}} \sigma_{\mathrm{N}}^u + \mathcal{L}_{\mathrm{D}} \sigma_{\mathrm{D}}^u} \right) \frac{ A_{zz}  P_{zz}}{2}$
 +
|-
 +
|style="width: 50px; height: 65px;" |(14c) || $A_{\mathrm{meas}} = f \frac{ A_{zz}  P_{zz}}{2}$
 +
|-
 +
|style="width: 50px; height: 65px;" |(15) || $A_{zz} = \frac{2  }{f \cdot P_{zz}}A_{\mathrm{meas}}$
 +
|-
 +
|}
 +
 +
In order to get the uncertainty, we'd use
 +
 +
{| class="wikitable" style="text-align:center; width:800px;" border="0"
 +
|style="width: 50px; height: 65px;" |(16) || $\delta A_{zz} = \sqrt{\left( \frac{\partial A_{zz}}{\partial A_{\mathrm{meas}}} \delta A_{\mathrm{meas}} \right)^2 + \left( \frac{\partial A_{zz}}{\partial f} \delta f \right)^2 + \left( \frac{\partial A_{zz}}{\partial P_{zz}} \delta P_{zz} \right)^2 }$
 +
|-
 +
|style="width: 50px; height: 65px;" |(16a) || $\delta A_{zz} = \sqrt{\left( \delta A_{zz}^{\mathrm{Stat}} \right) ^2 + \left( \delta A_{zz}^{\mathrm{Dil}} \right) ^2 + \left( \delta A_{zz}^{\mathrm{Pol}} \right) ^2  }$
 +
|-
 +
|style="width: 50px; height: 65px;" |(16b) || $\delta A_{zz} = \sqrt{\left( \delta A_{zz}^{\mathrm{Stat}} \right) ^2 + \left( \delta A_{zz}^{\mathrm{Sys}} \right) ^2 }$
 +
|-
 +
|}
 +
 +
Ignoring $\delta A_{zz}^{\mathrm{Sys}}$ for now (and in all of the plots I'm showing), then
 +
 +
{| class="wikitable" style="text-align:center; width:800px;" border="0"
 +
|style="width: 50px; height: 65px;" |(17) || $ \delta A_{zz}^{\mathrm{Stat}} = \frac{\partial A_{zz}}{\partial A_{\mathrm{meas}}} \delta A_{\mathrm{meas}} = \frac{2}{f\cdot P_{zz}} \delta A_{\mathrm{meas}} = \frac{2}{f\cdot P_{zz}}\frac{1}{\sqrt{N_{\mathrm{Total}}}} $
 +
|-
 +
|style="width: 50px; height: 65px;" |(17a) || $ \delta A_{zz}^{\mathrm{Stat}} = \frac{2}{f\cdot P_{zz}\sqrt{t\cdot R_{\mathrm{Total}}}} $
 +
|-
 +
|}
 +
 +
Using the same formalism that HERMES used (which defines $F_{1_{\mathrm{HERMES}}}^d = \frac{(1 + Q^2/\nu^2)F_2^d}{2x(1+R)}$ with $F_2^d=\frac{F_2^p + F_2^n}{2}$ as a ''per nucleon'' quantity, which corresponds to the Bosted that uses ''per nucleus'' by $F_{1_{\mathrm{HERMES}}}^d = \frac{F_{1_{\mathrm{Bosted}}}^d}{A_{\mathrm{D}}} = \frac{F_1^d}{2}$ -- [[Elong-13-05-01#Matching_HERMES_F1d.2C_dAzzd.2C_and_db1d|as described above]]), we can extract $b_1^d$ and its uncertainty by
 +
{| class="wikitable" style="text-align:center; width:800px;" border="0"
 +
|style="width: 50px; height: 65px;" |(18) || $ b_1^d = - \frac{3}{2}A_{zz} \left( \frac{F_1^d}{A_{\mathrm{D}}} \right)= - \frac{3}{2}A_{zz} \left( \frac{F_1^d}{2} \right)$
 +
|-
 +
|style="width: 50px; height: 65px;" |(19) || $ \delta b_1^d =\sqrt{ \left(\frac{\partial b_1^d}{\partial A_{zz}} \delta A_{zz} \right)^2 + \left(\frac{\partial b_1^d}{\partial F_1^d} \delta F_1^d \right)^2 }$
 +
|-
 +
|style="width: 50px; height: 65px;" |(19a) || $ \delta b_1^d =\sqrt{ \left[ - \frac{3}{2} \left( \frac{F_1^d}{2} \right)\delta A_{zz} \right]^2 + \left[ - \frac{3}{2} A_{zz} \left( \frac{1}{2} \right)\delta F_1^d \right]^2 }$
 +
|-
 +
|}
 +
 +
==Playing with 30 Days==
 +
Note that for everything below, I'm using
 +
::{| class="wikitable" style="text-align:center; border-collapse:collapse;" border="1"
 +
| style="width: 50px;" | '''<''x''>''' || style="width: 50px;" | '''''Q''<sup> 2</sup>''' || style="width: 50px;" | '''''W''''' || style="width: 50px;" | '''''E'''''' || style="width: 50px;" | '''''θ<sub>e'</sub>''''' || style="width: 50px;" | '''''θ<sub>q</sub>''''' || style="width: 50px;" | '''cos(''θ<sub>q</sub>'')'''
 +
|-
 +
| 0.1 || 1.01 || 3.16 || 5.62 || 7.33 || 7.52 || 0.99
 +
|-
 +
| 0.3 || 1.50 || 2.09 || 8.34 || 7.33 || 21.3 || 0.93
 +
|-
 +
| 0.452 || 2.58 || 2.00 || 7.96 || 9.85 || 23.31 || 0.92
 +
|-
 +
| 0.5 || 3.10 || 2.00 || 7.70 || 10.98 || 23.05 || 0.92
 +
|-
 +
|}
 +
 +
 +
 +
The most interesting point seems to be at <''x''> ~ 0.5. We can focus the majority of our time there (28 days for <''x''>=0.5, and 1 day for <''x''>=0.1 and 0.3), and still get reasonable results for two more points.
 +
 +
[[Image: 2013-05-01-day-day-month.png]]
 +
 +
We can do even better if we sit directly on <''x''> = 0.452 (28 days for <''x''>=0.452, and 1 day for <''x''>=0.1 and 0.3), since that lets us pull the angle down a bit and thus get a higher rate:
 +
 +
[[Image: 2013-05-01-day-day-month-2.png]]
 +
 +
If we wanted to do better than HERMES for all points, we could do 24 days for <''x''>=0.5, and 3 days for <''x''>=0.1 and 0.3
 +
 +
[[Image: 2013-05-01-3day-3day-24day.png]]
 +
 +
If we wanted to do a lot better than HERMES for all points, we could do 16 days for <''x''>=0.5, and 7 days for <''x''>=0.1 and 0.3
 +
 +
[[Image: 2013-05-01-7day-7day-16day.png]]
 +
 +
If we wanted to split our time up evenly, we could do 10 days for <''x''>=0.5, 0.3, and 0.1
 +
 +
[[Image: 2013-05-01-10day-10day-10day.png]]
 +
 +
Finally, to get a sense of how this changes, for each frame we take 2 days away from <''x''>=0.5 and give one day each to <''x''>=0.1 and 0.3
 +
 +
[[Image: 2013-05-01-days-change.gif]]
 +
 +
--[[User:Ellie|E. Long]] 20:31, 1 May 2013 (UTC)

Latest revision as of 14:49, 18 October 2023

Cross-Section Issue - Fixed

From looking at the dilution factor, f, I found a problem with how the cross-sections were calculated. We know that, naively,
$f=\frac{N_{D}}{(N_{D}+N_{N}+N_{He})} = \frac{t\cdot R_{D}}{(t\cdot R_{D}+t\cdot R_{N}+t\cdot R_{He})} = \frac{R_{D}}{(R_{D}+R_{N}+R_{He})} \approx \frac{N_{D}}{N_{D}+N_{N}}\approx \frac{3\sigma_{D}}{3\sigma_{D}+\sigma{N}}\approx \frac{3\cdot 2}{3\cdot 2 + 14}\approx 6/20=0.3$.

Originally, I was (wrongly) using $\frac{d^2\sigma^u}{d\Omega dE'} = \left( \frac{d\sigma}{d\Omega} \right) _{\mathrm{Mott}} \left[ \frac{2\cdot \left(\frac{F_1^{X}}{A_X} \right)}{m_{X}}\tan^2\left( \frac{\theta_{e'}}{2} \right) + \frac{\left( \frac{F_2^X}{A_X}\right) }{\nu} \right]$

where X = nucleus and $\left( \frac{d\sigma}{d\Omega} \right) _{\mathrm{Mott}}=\frac{Z^2 \alpha^2 \hbar^2 c^2}{4E^2\sin^4\left( \frac{\theta}{2} \right)}\cos^2\left( \frac{\theta}{2} \right)$.
This gave $f \approx 0.062$.

The problem came from using a nuclear Mott cross-section but a nucleon structure cross-section. To fix this, I first found the Mott cross-section for a proton,
$\left( \frac{d\sigma}{d\Omega} \right) _{\mathrm{Mott}_{\mathrm{p}}}=\frac{1^2 \alpha^2 \hbar^2 c^2}{4E^2\sin^4\left( \frac{\theta}{2} \right)}\cos^2\left( \frac{\theta}{2} \right)$,

and then multiplied that by the structure cross-section at the total number of nucleons,

$\frac{d^2\sigma^u}{d\Omega dE'} = A_X \left( \frac{d\sigma}{d\Omega} \right) _{\mathrm{Mott}_{\mathrm{p}}} \left[ \frac{2\cdot \left(\frac{F_1^{X}}{A_X} \right)}{m_{p}}\tan^2\left( \frac{\theta_{e'}}{2} \right) + \frac{\left( \frac{F_2^X}{A_X}\right) }{\nu} \right]$.

This gave $f \approx \frac{3\sigma_{D}}{3\sigma_{D}+\sigma{N}} \approx 0.29$, as expected.

Plugging all this into the rates code gave (NOTE: The error on b1d is wrong, as discussed below):
2013-05-01-fixed-cs.png

Matching HERMES F1d, dAzzd, and db1d

I wanted to double-check the code against the HERMES data, but this required a few extra steps. First, using the values for $A_{zz}^d$ and $b_{1}^d$ that they measured, along with the formula $b_1^d = -\frac{3}{2}A^d_{zz}F^d_1$, I found what they were using for $F^d_1$. The $F^d_1$ they're using is per nucleon, and for HERMES' two highest x points (the rest are inaccessible to the Bosted code because for 0.012<x<0.063, 16.75<W2<42.87, which is outside the W range that the code can handle) they match the code relatively well:

<x> Q 2 HERMES $F_1^d$ Bosted $\frac{F_1^d}{A_d}$
0.128 2.33 1.018 0.620 (Outside Bosted "Good" range)
0.248 3.11 0.496 0.486
0.452 4.69 0.161 0.171

This means that the way I was calculating the error $\delta b_1^d=\frac{3}{2}\delta A_{zz}^d F_1^d$ was off by a factor of $A_d=2$. This was corrected.

I also played a bit with the statistics, trying to match the HERMES results. However, that's a very quick estimate of trying to use the SMHS to copy the HERMES detector, and so the entire link should be taken with a huge grain of salt.

Fixed Rates Code

Now that everything is working as it should, I've replotted the lowest three <x> points where we can spend 4 weeks taking data. Since the HMS can't get into the range we need for $F_1^d$, I've removed those calculations. The results (on a re-worked scale to emphasize their value) are:
2013-05-01-rates-fixed.png

Where

Target Material ND3
Target Length 3 cm
fdil Calculated ~ 0.3
pf 0.65
Pzz 20%
E0 11 GeV
xBjorken 0.1, 0.3, 0.5
Q2 Variable
θq Calculated
θe' Calculated
E' Calculated
W Calculated

Azz Formalism

Just for clarification, I'm using the formalism as described below.

Target Material = ND3
$z_{\mathrm{tgt}} = 3\mathrm{ cm}$
$p_f = 0.65$
$P_{zz} = 20\%$
$N_{A} = 6.0221413\cdot 10^{23}$
$\rho_{\mathrm{He}} = 0.1412 \mathrm{g/cm}^3$
$M_{\mathrm{He}} = 4.0026 \mathrm{g/mole}$
$\rho_{\mathrm{ND}_3} = 1.007 \mathrm{g/cm}^3$
$M_{\mathrm{ND}_3} = 20 \mathrm{g/mole}$
$I_{\mathrm{beam}} = 0.115 \mathrm{\mu A}$
$\delta F_1^d = 5\%$


(1) $R_{\mathrm{Total}} = \mathcal{A}\left[ \mathcal{L}_{\mathrm{He}}\left( \frac{d^2\sigma_{\mathrm{He}}^u}{d\Omega dE'}\right) + \mathcal{L}_{\mathrm{N}}\left( \frac{d^2\sigma_{\mathrm{N}}^u}{d\Omega dE'}\right) + \mathcal{L}_{\mathrm{D}}\left( \frac{d^2\sigma_{\mathrm{D}}}{d\Omega dE'}\right) \right]$
(2) $R_{\mathrm{Total}} = \mathcal{A}\left[ \mathcal{L}_{\mathrm{He}}\left( \frac{d^2\sigma_{\mathrm{He}}^u}{d\Omega dE'}\right) + \mathcal{L}_{\mathrm{N}}\left( \frac{d^2\sigma_{\mathrm{N}}^u}{d\Omega dE'}\right) + \mathcal{L}_{\mathrm{D}}\left( \frac{d^2\sigma_{\mathrm{D}}^u}{d\Omega dE'}\left[ 1 + \frac{1}{2}P_{zz}A_{zz}^d \right]\right) \right] $
(2a) $R_{\mathrm{Total}} = \mathcal{A}\left[ \mathcal{L}_{\mathrm{He}} \sigma_{\mathrm{He}}^u + \mathcal{L}_{\mathrm{N}} \sigma_{\mathrm{N}}^u + \mathcal{L}_{\mathrm{D}} \sigma_{\mathrm{D}}^u\left( 1 + \frac{1}{2}P_{zz}A_{zz}^d \right) \right] $

where

(3) $\mathcal{A} = \left( \Delta\Omega \Delta E' \right)$
(4) $\mathcal{L}_{\mathrm{He}} = \left[ \mathcal{N}_A \frac{\rho_{\mathrm{He}}}{M_{\mathrm{He}}}\left(1 - p_f\right) \right] \cdot \left( \frac{I_{\mathrm{beam}}}{e} \right) \cdot z_{\mathrm{tgt}}$
(5) $\mathcal{L}_{\mathrm{N}} = \left[ \mathcal{N}_A \frac{\rho_{\mathrm{ND}_3}}{M_{\mathrm{ND}_3}} p_f \right] \cdot \left( \frac{I_{\mathrm{beam}}}{e} \right) \cdot z_{\mathrm{tgt}}$
(6) $\mathcal{L}_{\mathrm{D}} = 3\left[ \mathcal{N}_A \frac{\rho_{\mathrm{ND}_3}}{M_{\mathrm{ND}_3}} p_f \right] \cdot \left( \frac{I_{\mathrm{beam}}}{e} \right) \cdot z_{\mathrm{tgt}}$
(7) $\sigma^u_X = \frac{d^2\sigma^u_X}{d\Omega dE'} = A_X \left( \frac{d\sigma}{d\Omega} \right) _{\mathrm{Mott}_{\mathrm{p}}} \left[ \frac{2\cdot \left(\frac{F_1^{X}}{A_X} \right)}{m_{p}}\tan^2\left( \frac{\theta_{e'}}{2} \right) + \frac{\left( \frac{F_2^X}{A_X}\right) }{\nu} \right]$
(8) $\left( \frac{d\sigma}{d\Omega} \right) _{\mathrm{Mott}_{\mathrm{p}}}=\frac{1^2 \alpha^2 \hbar^2 c^2}{4E^2\sin^4\left( \frac{\theta}{2} \right)}\cos^2\left( \frac{\theta}{2} \right)$
(9) $\sigma_D = \frac{d^2\sigma_{\mathrm{D}}}{d\Omega dE'} = \frac{d^2\sigma_{\mathrm{D}}^u}{d\Omega dE'}\left[ 1 + \frac{1}{2}P_{zz}A_{zz}^d \right] $

Then

(10) $R^+_{\mathrm{Total}} - R^-_{\mathrm{Total}} = \mathcal{A}\left[ \mathcal{L}_{\mathrm{He}} \sigma_{\mathrm{He}}^u + \mathcal{L}_{\mathrm{N}} \sigma_{\mathrm{N}}^u + \mathcal{L}_{\mathrm{D}} \sigma_{\mathrm{D}}^u\left( 1 + \frac{1}{2}P_{zz}^+ A_{zz}^d \right) \right] - \mathcal{A}\left[ \mathcal{L}_{\mathrm{He}} \sigma_{\mathrm{He}}^u + \mathcal{L}_{\mathrm{N}} \sigma_{\mathrm{N}}^u + \mathcal{L}_{\mathrm{D}} \sigma_{\mathrm{D}}^u\left( 1 + \frac{1}{2}P_{zz}^- A_{zz}^d \right) \right] $
(10a) $R^+_{\mathrm{Total}} - R^-_{\mathrm{Total}} = \mathcal{A}\mathcal{L}_{\mathrm{D}}\sigma_{\mathrm{D}}^u \frac{1}{2}A_{zz} \left[ P_{zz}^+ - P_{zz}^- \right]$
(11) $R^+_{\mathrm{Total}} + R^-_{\mathrm{Total}} = \mathcal{A}\left[ \mathcal{L}_{\mathrm{He}} \sigma_{\mathrm{He}}^u + \mathcal{L}_{\mathrm{N}} \sigma_{\mathrm{N}}^u + \mathcal{L}_{\mathrm{D}} \sigma_{\mathrm{D}}^u\left( 1 + \frac{1}{2}P_{zz}^+ A_{zz}^d \right) \right] + \mathcal{A}\left[ \mathcal{L}_{\mathrm{He}} \sigma_{\mathrm{He}}^u + \mathcal{L}_{\mathrm{N}} \sigma_{\mathrm{N}}^u + \mathcal{L}_{\mathrm{D}} \sigma_{\mathrm{D}}^u\left( 1 + \frac{1}{2}P_{zz}^- A_{zz}^d \right) \right] $
(11a) $R^+_{\mathrm{Total}} + R^-_{\mathrm{Total}} = 2\mathcal{A}\left[ \mathcal{L}_{\mathrm{He}} \sigma_{\mathrm{He}}^u + \mathcal{L}_{\mathrm{N}} \sigma_{\mathrm{N}}^u + \mathcal{L}_{\mathrm{D}} \sigma_{\mathrm{D}}^u \right] + \mathcal{A}\mathcal{L}_{\mathrm{D}} \sigma_{\mathrm{D}}^u\left[ \frac{1}{2}P_{zz}^+ A_{zz}^d + \frac{1}{2}P_{zz}^- A_{zz}^d \right] $

If we assume that $P_{zz}^+ = -P_{zz}^- = P_{zz}$, then

(12) $R^+_{\mathrm{Total}} - R^-_{\mathrm{Total}} = \mathcal{A}\mathcal{L}_{\mathrm{D}}\sigma_{\mathrm{D}}^u A_{zz} P_{zz}$
(13) $R^+_{\mathrm{Total}} + R^-_{\mathrm{Total}} = 2\mathcal{A}\left[ \mathcal{L}_{\mathrm{He}} \sigma_{\mathrm{He}}^u + \mathcal{L}_{\mathrm{N}} \sigma_{\mathrm{N}}^u + \mathcal{L}_{\mathrm{D}} \sigma_{\mathrm{D}}^u \right] $
(14) $A_{\mathrm{meas}} = \frac{R^+_{\mathrm{Total}} - R^-_{\mathrm{Total}}}{R^+_{\mathrm{Total}} + R^-_{\mathrm{Total}}}$
(14a) $A_{\mathrm{meas}} = \frac{\mathcal{L}_{\mathrm{D}}\sigma_{\mathrm{D}}^u A_{zz} P_{zz}}{2\left[ \mathcal{L}_{\mathrm{He}} \sigma_{\mathrm{He}}^u + \mathcal{L}_{\mathrm{N}} \sigma_{\mathrm{N}}^u + \mathcal{L}_{\mathrm{D}} \sigma_{\mathrm{D}}^u \right]}$
(14b) $A_{\mathrm{meas}} = \left( \frac{\mathcal{L}_{\mathrm{D}}\sigma_{\mathrm{D}}^u}{\mathcal{L}_{\mathrm{He}} \sigma_{\mathrm{He}}^u + \mathcal{L}_{\mathrm{N}} \sigma_{\mathrm{N}}^u + \mathcal{L}_{\mathrm{D}} \sigma_{\mathrm{D}}^u} \right) \frac{ A_{zz} P_{zz}}{2}$
(14c) $A_{\mathrm{meas}} = f \frac{ A_{zz} P_{zz}}{2}$
(15) $A_{zz} = \frac{2 }{f \cdot P_{zz}}A_{\mathrm{meas}}$

In order to get the uncertainty, we'd use

(16) $\delta A_{zz} = \sqrt{\left( \frac{\partial A_{zz}}{\partial A_{\mathrm{meas}}} \delta A_{\mathrm{meas}} \right)^2 + \left( \frac{\partial A_{zz}}{\partial f} \delta f \right)^2 + \left( \frac{\partial A_{zz}}{\partial P_{zz}} \delta P_{zz} \right)^2 }$
(16a) $\delta A_{zz} = \sqrt{\left( \delta A_{zz}^{\mathrm{Stat}} \right) ^2 + \left( \delta A_{zz}^{\mathrm{Dil}} \right) ^2 + \left( \delta A_{zz}^{\mathrm{Pol}} \right) ^2 }$
(16b) $\delta A_{zz} = \sqrt{\left( \delta A_{zz}^{\mathrm{Stat}} \right) ^2 + \left( \delta A_{zz}^{\mathrm{Sys}} \right) ^2 }$

Ignoring $\delta A_{zz}^{\mathrm{Sys}}$ for now (and in all of the plots I'm showing), then

(17) $ \delta A_{zz}^{\mathrm{Stat}} = \frac{\partial A_{zz}}{\partial A_{\mathrm{meas}}} \delta A_{\mathrm{meas}} = \frac{2}{f\cdot P_{zz}} \delta A_{\mathrm{meas}} = \frac{2}{f\cdot P_{zz}}\frac{1}{\sqrt{N_{\mathrm{Total}}}} $
(17a) $ \delta A_{zz}^{\mathrm{Stat}} = \frac{2}{f\cdot P_{zz}\sqrt{t\cdot R_{\mathrm{Total}}}} $

Using the same formalism that HERMES used (which defines $F_{1_{\mathrm{HERMES}}}^d = \frac{(1 + Q^2/\nu^2)F_2^d}{2x(1+R)}$ with $F_2^d=\frac{F_2^p + F_2^n}{2}$ as a per nucleon quantity, which corresponds to the Bosted that uses per nucleus by $F_{1_{\mathrm{HERMES}}}^d = \frac{F_{1_{\mathrm{Bosted}}}^d}{A_{\mathrm{D}}} = \frac{F_1^d}{2}$ -- as described above), we can extract $b_1^d$ and its uncertainty by

(18) $ b_1^d = - \frac{3}{2}A_{zz} \left( \frac{F_1^d}{A_{\mathrm{D}}} \right)= - \frac{3}{2}A_{zz} \left( \frac{F_1^d}{2} \right)$
(19) $ \delta b_1^d =\sqrt{ \left(\frac{\partial b_1^d}{\partial A_{zz}} \delta A_{zz} \right)^2 + \left(\frac{\partial b_1^d}{\partial F_1^d} \delta F_1^d \right)^2 }$
(19a) $ \delta b_1^d =\sqrt{ \left[ - \frac{3}{2} \left( \frac{F_1^d}{2} \right)\delta A_{zz} \right]^2 + \left[ - \frac{3}{2} A_{zz} \left( \frac{1}{2} \right)\delta F_1^d \right]^2 }$

Playing with 30 Days

Note that for everything below, I'm using

<x> Q 2 W E' θe' θq cos(θq)
0.1 1.01 3.16 5.62 7.33 7.52 0.99
0.3 1.50 2.09 8.34 7.33 21.3 0.93
0.452 2.58 2.00 7.96 9.85 23.31 0.92
0.5 3.10 2.00 7.70 10.98 23.05 0.92


The most interesting point seems to be at <x> ~ 0.5. We can focus the majority of our time there (28 days for <x>=0.5, and 1 day for <x>=0.1 and 0.3), and still get reasonable results for two more points.

2013-05-01-day-day-month.png

We can do even better if we sit directly on <x> = 0.452 (28 days for <x>=0.452, and 1 day for <x>=0.1 and 0.3), since that lets us pull the angle down a bit and thus get a higher rate:

2013-05-01-day-day-month-2.png

If we wanted to do better than HERMES for all points, we could do 24 days for <x>=0.5, and 3 days for <x>=0.1 and 0.3

2013-05-01-3day-3day-24day.png

If we wanted to do a lot better than HERMES for all points, we could do 16 days for <x>=0.5, and 7 days for <x>=0.1 and 0.3

2013-05-01-7day-7day-16day.png

If we wanted to split our time up evenly, we could do 10 days for <x>=0.5, 0.3, and 0.1

2013-05-01-10day-10day-10day.png

Finally, to get a sense of how this changes, for each frame we take 2 days away from <x>=0.5 and give one day each to <x>=0.1 and 0.3

2013-05-01-days-change.gif

--E. Long 20:31, 1 May 2013 (UTC)