Difference between revisions of "Elong-13-10-01"

From HallCWiki
Jump to navigationJump to search
 
(17 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
==Cross Section Calculation==
 
==Cross Section Calculation==
  
For previous calculations, I was using a simplified version of the cross-section where it was assumed that <math>F_2=2x\cdot F_1</math>, such that
+
For previous calculations, I was using a simplified version of the cross-section where it was assumed that $F_2=2x\cdot F_1$, such that
  
<math>\frac{d^2\sigma^u}{d\Omega dE'} = A_X \left( \frac{d\sigma}{d\Omega} \right) _{\mathrm{Mott}_{\mathrm{p}}} \left[ \frac{2\cdot \left(\frac{F_1^{X}}{A_X} \right)}{m_{p}}\right]\cdot \left[\tan^2\left( \frac{\theta_{e'}}{2} \right) + \frac{Q^2 }{2\nu^2} \right] </math>.<br>
+
$\frac{d^2\sigma^u}{d\Omega dE'} = A_X \left( \frac{d\sigma}{d\Omega} \right) _{\mathrm{Mott}_{\mathrm{p}}} \left[ \frac{2\cdot \left(\frac{F_1^{X}}{A_X} \right)}{m_{p}}\right]\cdot \left[\tan^2\left( \frac{\theta_{e'}}{2} \right) + \frac{Q^2 }{2\nu^2} \right] $.<br>
  
  
Since we're in a region that isn't DIS, I thought that the difference may be important so I incorporated <math>F_2</math> from Bosted and removed the assumption:
+
Since we're in a region that isn't DIS, I thought that the difference may be important so I incorporated $F_2$ from Bosted and removed the assumption:
  
<math>\frac{d^2\sigma^u}{d\Omega dE'} = A_X \left( \frac{d\sigma}{d\Omega} \right) _{\mathrm{Mott}_{\mathrm{p}}} \left[ \frac{2\cdot \left(\frac{F_1^{X}}{A_X} \right)}{m_{p}}\tan^2\left( \frac{\theta_{e'}}{2} \right) + \frac{\left( \frac{F_2^X}{A_X}\right) }{\nu} \right]</math>.<br>
+
$\frac{d^2\sigma^u}{d\Omega dE'} = A_X \left( \frac{d\sigma}{d\Omega} \right) _{\mathrm{Mott}_{\mathrm{p}}} \left[ \frac{2\cdot \left(\frac{F_1^{X}}{A_X} \right)}{m_{p}}\tan^2\left( \frac{\theta_{e'}}{2} \right) + \frac{\left( \frac{F_2^X}{A_X}\right) }{\nu} \right]$.<br>
  
  
This increased the statistical uncertainty, particularly in the high-x region. It also lowered the rates dramatically, which gives us some room to play around with a lower <math>Q^2</math>.
+
This increased the statistical uncertainty, particularly in the high-x region. It also lowered the rates dramatically, which gives us some room to play around with a lower $Q^2$.
  
 
[[Image:2013-09-30-fixed-sigma-Azz-plots.png]]
 
[[Image:2013-09-30-fixed-sigma-Azz-plots.png]]
Line 18: Line 18:
  
 
{| class="wikitable" style="text-align:center; border-collapse:collapse;" border="1"
 
{| class="wikitable" style="text-align:center; border-collapse:collapse;" border="1"
! <math>F_1 \mathrm{~Only}</math> !! <math>F_1\mathrm{~and~}F_2</math>
+
! $F_1 \mathrm{~Only}$ !! $F_1\mathrm{~and~}F_2$
 
|-  
 
|-  
| [[Image:2013-09-30-bosted-cs.png]] || [[Image:2013-09-30-cs-f1-f2.png]]
+
| [[Image:2013-09-30-bosted-cs.png|350px]] || [[Image:2013-09-30-cs-f1-f2.png|350px]]
 
|-   
 
|-   
 
|}
 
|}
Line 26: Line 26:
 
The dilution factor is nearly identical.
 
The dilution factor is nearly identical.
  
[[Image:2013-09-30-cs-fixed-fdil.png]]
+
[[Image:2013-09-30-cs-fixed-fdil.png|350px]]
  
==Cross Section Check for b1==
+
===Cross Section Check for b1===
  
 
To see if this could cause a problem for the b1 statistics, I did a study of the effects of changing the cross section calculation from the simplified to the full for the b1 kinematics.
 
To see if this could cause a problem for the b1 statistics, I did a study of the effects of changing the cross section calculation from the simplified to the full for the b1 kinematics.
  
 
{| class="wikitable" style="text-align:center; border-collapse:collapse;" border="1"
 
{| class="wikitable" style="text-align:center; border-collapse:collapse;" border="1"
! HMS<br><math>\theta_{e'}=12.50^{\circ}</math><br><math>E'=7.31\mathrm{~GeV}</math> !! SHMS 1<br><math>\theta_{e'}=7.35^{\circ}</math><br><math>E'=6.80\mathrm{~GeV}</math> !! SHMS 2<br><math>\theta_{e'}=8.96^{\circ}</math><br><math>E'=7.45\mathrm{~GeV}</math> !! SHMS 3<br><math>\theta_{e'}=9.85^{\circ}</math> <br><math>E'=7.96\mathrm{~GeV}</math>
+
! SHMS 1<br>$\theta_{e'}=7.35^{\circ}$<br>$E'=6.80\mathrm{~GeV}$ !! SHMS 2<br>$\theta_{e'}=8.96^{\circ}$<br>$E'=7.45\mathrm{~GeV}$ !! SHMS 3<br>$\theta_{e'}=9.85^{\circ}$ <br>$E'=7.96\mathrm{~GeV}$ !! HMS<br>$\theta_{e'}=12.50^{\circ}$<br>$E'=7.31\mathrm{~GeV}$
 
|-  
 
|-  
| [[Image:2013-10-01-b1-hms-cs.png]] || [[Image:2013-10-01-b1-shms-1-cs.png]] || [[Image:2013-10-01-b1-shms-2-cs.png]] || [[Image:2013-10-01-b1-shms-3-cs.png]]
+
| [[Image:2013-10-01-b1-shms-1-cs.png|350px]] || [[Image:2013-10-01-b1-shms-2-cs.png|350px]] || [[Image:2013-10-01-b1-shms-3-cs.png|350px]] || [[Image:2013-10-01-b1-hms-cs.png|350px]]  
 
|-   
 
|-   
 
|}
 
|}
  
==Cross Section Check for Azz==
+
===Cross Section Check for Azz===
  
Same as the section above, looking at the difference between the simplified cross section using only <math>F_1</math> and the full cross section using both <math>F_1</math> and <math>F_2</math>, but for the Azz kinematics.
+
Same as the section above, looking at the difference between the simplified cross section using only $F_1$ and the full cross section using both $F_1$ and $F_2$, but for the Azz kinematics.
  
 
{| class="wikitable" style="text-align:center; border-collapse:collapse;" border="1"
 
{| class="wikitable" style="text-align:center; border-collapse:collapse;" border="1"
! HMS<br><math>\theta_{e'}=12.45^{\circ}</math><br><math>E'=5.80\mathrm{~GeV}</math> !! SHMS<br><math>\theta_{e'}=9.51^{\circ}</math><br><math>E'=6.07\mathrm{~GeV}</math>
+
! HMS<br>$\theta_{e'}=12.45^{\circ}$<br>$E'=5.80\mathrm{~GeV}$ !! SHMS<br>$\theta_{e'}=9.51^{\circ}$<br>$E'=6.07\mathrm{~GeV}$
 
|-  
 
|-  
| [[Image:2013-10-01-Azz-hms-cs.png]] || [[Image:2013-10-01-Azz-shms-cs.png]]
+
| [[Image:2013-10-01-Azz-hms-cs.png|350px]] || [[Image:2013-10-01-Azz-shms-cs.png|350px]]
 
|-   
 
|-   
 
|}
 
|}
  
  
--[[User:Ellie|E. Long]] 21:20, 1 October 2013 (UTC)
+
===Comparison to Data===
 +
 
 +
In order to see how my calculations line up with actual data, I've taken the deuterium information from [http://faculty.virginia.edu/qes-archive/QES-data.php the quasi-elastic scattering archive data page] to compare our cross section calculations for b1 and Azz. There are two measurements (both Shutz:1976) that are similar to our settings:
 +
 
 +
{| class="wikitable" style="text-align:center; border-collapse:collapse;" border="1"
 +
! Similar to $A_{zz}$<br>$E_{\mathrm{beam}}=6.519\mathrm{~GeV}$<br>$\theta_{e'}=8.00^{\circ}$ !! Similar to $b_1$<br>$E_{\mathrm{beam}}=11.671\mathrm{~GeV}$<br>$\theta_{e'}=8.00^{\circ}$
 +
|-
 +
| [[Image:2013-10-02-cs-check-exp-1.png|350px]] || [[Image:2013-10-02-cs-check-exp-2.png|350px]]
 +
|- 
 +
|}
 +
 
 +
The top and bottom plots are the same, just that the top are on a log scale and the bottom on a linear scale.
 +
 
 +
===Inelastic and Quasielastic Structure Functions===
 +
 
 +
Previously, I've been shutting off the inelastic part of the structure functions and turning on the quasi-elastic when x=0.75. This creates a discontinuity and may cause trouble for estimating the dilution factor for Azz. As such, I've re-done the calculations of the cross sections and the dilution factors above using
 +
 
 +
$\frac{d^2\sigma^u}{d\Omega dE'} = A_X \left( \frac{d\sigma}{d\Omega} \right) _{\mathrm{Mott}_{\mathrm{p}}} \left[ \frac{2\cdot \left(\frac{F_{1IE}^X + F_{1QE}^X}{A_X} \right)}{m_{p}}\tan^2\left( \frac{\theta_{e'}}{2} \right) + \frac{\left( \frac{F_{2IE}^X+F_{2QE}^X}{A_X}\right) }{\nu} \right]$,
 +
 
 +
where $F_{1IE}^X$ and $F_{2IE}^X$ are the inelastic form factors, and $F_{1QE}^X$ and $F_{2QE}^X$ are the quasi-elastic form factors. Below are plots with the combined form factors (in purple) along with just the contribution from DIS (in red) and from QE (in blue).
 +
 
 +
{| class="wikitable" style="text-align:center; border-collapse:collapse;" border="1"
 +
! SHMS 1<br>$\theta_{e'}=7.35^{\circ}$<br>$E'=6.80\mathrm{~GeV}$ !! SHMS 2<br>$\theta_{e'}=8.96^{\circ}$<br>$E'=7.45\mathrm{~GeV}$ !! SHMS 3<br>$\theta_{e'}=9.85^{\circ}$ <br>$E'=7.96\mathrm{~GeV}$ !! HMS<br>$\theta_{e'}=12.50^{\circ}$<br>$E'=7.31\mathrm{~GeV}$
 +
|-
 +
| [[Image:2013-10-03-b1-shms-1-ie-qe.png|350px]] || [[Image:2013-10-03-b1-shms-2-ie-qe.png|350px]] || [[Image:2013-10-03-b1-shms-3-ie-qe.png|350px]] || [[Image:2013-10-03-b1-hms-ie-qe.png|350px]]
 +
|- 
 +
|}
 +
 
 +
 
 +
 
 +
{| class="wikitable" style="text-align:center; border-collapse:collapse;" border="1"
 +
! HMS<br>$\theta_{e'}=12.45^{\circ}$<br>$E'=5.80\mathrm{~GeV}$ !! SHMS<br>$\theta_{e'}=9.51^{\circ}$<br>$E'=6.07\mathrm{~GeV}$
 +
|-
 +
| [[Image:2013-10-03-Azz-hms-ie-qe.png|350px]] || [[Image:2013-10-03-Azz-shms-ie-qe.png|350px]]
 +
|- 
 +
|}
 +
 
 +
 
 +
 
 +
--[[User:Ellie|E. Long]] 18:57, 2 October 2013 (UTC)

Latest revision as of 13:55, 18 October 2023

Cross Section Calculation

For previous calculations, I was using a simplified version of the cross-section where it was assumed that $F_2=2x\cdot F_1$, such that

$\frac{d^2\sigma^u}{d\Omega dE'} = A_X \left( \frac{d\sigma}{d\Omega} \right) _{\mathrm{Mott}_{\mathrm{p}}} \left[ \frac{2\cdot \left(\frac{F_1^{X}}{A_X} \right)}{m_{p}}\right]\cdot \left[\tan^2\left( \frac{\theta_{e'}}{2} \right) + \frac{Q^2 }{2\nu^2} \right] $.


Since we're in a region that isn't DIS, I thought that the difference may be important so I incorporated $F_2$ from Bosted and removed the assumption:

$\frac{d^2\sigma^u}{d\Omega dE'} = A_X \left( \frac{d\sigma}{d\Omega} \right) _{\mathrm{Mott}_{\mathrm{p}}} \left[ \frac{2\cdot \left(\frac{F_1^{X}}{A_X} \right)}{m_{p}}\tan^2\left( \frac{\theta_{e'}}{2} \right) + \frac{\left( \frac{F_2^X}{A_X}\right) }{\nu} \right]$.


This increased the statistical uncertainty, particularly in the high-x region. It also lowered the rates dramatically, which gives us some room to play around with a lower $Q^2$.

2013-09-30-fixed-sigma-Azz-plots.png

Although this changes the cross sections quite a bit,

$F_1 \mathrm{~Only}$ $F_1\mathrm{~and~}F_2$
2013-09-30-bosted-cs.png 2013-09-30-cs-f1-f2.png

The dilution factor is nearly identical.

2013-09-30-cs-fixed-fdil.png

Cross Section Check for b1

To see if this could cause a problem for the b1 statistics, I did a study of the effects of changing the cross section calculation from the simplified to the full for the b1 kinematics.

SHMS 1
$\theta_{e'}=7.35^{\circ}$
$E'=6.80\mathrm{~GeV}$
SHMS 2
$\theta_{e'}=8.96^{\circ}$
$E'=7.45\mathrm{~GeV}$
SHMS 3
$\theta_{e'}=9.85^{\circ}$
$E'=7.96\mathrm{~GeV}$
HMS
$\theta_{e'}=12.50^{\circ}$
$E'=7.31\mathrm{~GeV}$
2013-10-01-b1-shms-1-cs.png 2013-10-01-b1-shms-2-cs.png 2013-10-01-b1-shms-3-cs.png 2013-10-01-b1-hms-cs.png

Cross Section Check for Azz

Same as the section above, looking at the difference between the simplified cross section using only $F_1$ and the full cross section using both $F_1$ and $F_2$, but for the Azz kinematics.

HMS
$\theta_{e'}=12.45^{\circ}$
$E'=5.80\mathrm{~GeV}$
SHMS
$\theta_{e'}=9.51^{\circ}$
$E'=6.07\mathrm{~GeV}$
2013-10-01-Azz-hms-cs.png 2013-10-01-Azz-shms-cs.png


Comparison to Data

In order to see how my calculations line up with actual data, I've taken the deuterium information from the quasi-elastic scattering archive data page to compare our cross section calculations for b1 and Azz. There are two measurements (both Shutz:1976) that are similar to our settings:

Similar to $A_{zz}$
$E_{\mathrm{beam}}=6.519\mathrm{~GeV}$
$\theta_{e'}=8.00^{\circ}$
Similar to $b_1$
$E_{\mathrm{beam}}=11.671\mathrm{~GeV}$
$\theta_{e'}=8.00^{\circ}$
2013-10-02-cs-check-exp-1.png 2013-10-02-cs-check-exp-2.png

The top and bottom plots are the same, just that the top are on a log scale and the bottom on a linear scale.

Inelastic and Quasielastic Structure Functions

Previously, I've been shutting off the inelastic part of the structure functions and turning on the quasi-elastic when x=0.75. This creates a discontinuity and may cause trouble for estimating the dilution factor for Azz. As such, I've re-done the calculations of the cross sections and the dilution factors above using

$\frac{d^2\sigma^u}{d\Omega dE'} = A_X \left( \frac{d\sigma}{d\Omega} \right) _{\mathrm{Mott}_{\mathrm{p}}} \left[ \frac{2\cdot \left(\frac{F_{1IE}^X + F_{1QE}^X}{A_X} \right)}{m_{p}}\tan^2\left( \frac{\theta_{e'}}{2} \right) + \frac{\left( \frac{F_{2IE}^X+F_{2QE}^X}{A_X}\right) }{\nu} \right]$,

where $F_{1IE}^X$ and $F_{2IE}^X$ are the inelastic form factors, and $F_{1QE}^X$ and $F_{2QE}^X$ are the quasi-elastic form factors. Below are plots with the combined form factors (in purple) along with just the contribution from DIS (in red) and from QE (in blue).

SHMS 1
$\theta_{e'}=7.35^{\circ}$
$E'=6.80\mathrm{~GeV}$
SHMS 2
$\theta_{e'}=8.96^{\circ}$
$E'=7.45\mathrm{~GeV}$
SHMS 3
$\theta_{e'}=9.85^{\circ}$
$E'=7.96\mathrm{~GeV}$
HMS
$\theta_{e'}=12.50^{\circ}$
$E'=7.31\mathrm{~GeV}$
2013-10-03-b1-shms-1-ie-qe.png 2013-10-03-b1-shms-2-ie-qe.png 2013-10-03-b1-shms-3-ie-qe.png 2013-10-03-b1-hms-ie-qe.png


HMS
$\theta_{e'}=12.45^{\circ}$
$E'=5.80\mathrm{~GeV}$
SHMS
$\theta_{e'}=9.51^{\circ}$
$E'=6.07\mathrm{~GeV}$
2013-10-03-Azz-hms-ie-qe.png 2013-10-03-Azz-shms-ie-qe.png


--E. Long 18:57, 2 October 2013 (UTC)