Difference between revisions of "Elong-14-05-23"

From HallCWiki
Jump to navigationJump to search
 
Line 4: Line 4:
  
  
<math>r(0,k) = \frac{\sigma_m^0}{\sigma_u}</math>
+
$r(0,k) = \frac{\sigma_m^0}{\sigma_u}$
  
  
<math>r(+1,k) = \frac{\sigma_m^+}{\sigma_u}</math>
+
$r(+1,k) = \frac{\sigma_m^+}{\sigma_u}$
  
  
<math>r(-1,k) = \frac{\sigma_m^-}{\sigma_u}</math>
+
$r(-1,k) = \frac{\sigma_m^-}{\sigma_u}$
  
  
To go from these into our Azz observable, which is just the tensor-polarized cross section over the unpolarized cross section, we need <math>\sigma_u = \frac{1}{3}(\sigma_m^0 + \sigma_m^+ + \sigma_m^-)</math> and <math>\sigma_p^0 = \frac{1}{3}(\sigma_m^+ + \sigma_m^- - 2\sigma_m^0 )</math> such that
+
To go from these into our Azz observable, which is just the tensor-polarized cross section over the unpolarized cross section, we need $\sigma_u = \frac{1}{3}(\sigma_m^0 + \sigma_m^+ + \sigma_m^-)$ and $\sigma_p^0 = \frac{1}{3}(\sigma_m^+ + \sigma_m^- - 2\sigma_m^0 )$ such that
  
  
<math>A_{zz} = \frac{\sigma_p^0 - \sigma_u}{\sigma_u} </math>
+
$A_{zz} = \frac{\sigma_p^0 - \sigma_u}{\sigma_u} $
  
  
<math>A_{zz} = \frac{\frac{1}{3}(\sigma_m^+ + \sigma_m^- - 2\sigma_m^0 ) - \frac{1}{3}(\sigma_m^0 + \sigma_m^+ + \sigma_m^-)}{\sigma_u}</math>
+
$A_{zz} = \frac{\frac{1}{3}(\sigma_m^+ + \sigma_m^- - 2\sigma_m^0 ) - \frac{1}{3}(\sigma_m^0 + \sigma_m^+ + \sigma_m^-)}{\sigma_u}$
  
  
<math>A_{zz} = \frac{1}{3}\frac{(\sigma_m^+ - \sigma_m^+) + (\sigma_m^- - \sigma_m^-) + (-2\sigma_m^0 - \sigma_m^0)}{\sigma_u}</math>
+
$A_{zz} = \frac{1}{3}\frac{(\sigma_m^+ - \sigma_m^+) + (\sigma_m^- - \sigma_m^-) + (-2\sigma_m^0 - \sigma_m^0)}{\sigma_u}$
  
  
<math>A_{zz} = \frac{-3}{3}\frac{\sigma_m^0}{\sigma_u}</math>
+
$A_{zz} = \frac{-3}{3}\frac{\sigma_m^0}{\sigma_u}$
  
  
<math>A_{zz} = -\frac{\sigma_m^0}{\sigma_u}</math>
+
$A_{zz} = -\frac{\sigma_m^0}{\sigma_u}$
  
  
<math>A_{zz} = -r(0,k) \frac{}{}</math>
+
$A_{zz} = -r(0,k) \frac{}{}$

Latest revision as of 14:27, 18 October 2023

Clarifying Azz

In the steps mentioned below, following in the footsteps of Frankfurt & Strikman, everything is defined in terms of ratios of the polarized cross-section over the unpolarized cross sections. This leads to


$r(0,k) = \frac{\sigma_m^0}{\sigma_u}$


$r(+1,k) = \frac{\sigma_m^+}{\sigma_u}$


$r(-1,k) = \frac{\sigma_m^-}{\sigma_u}$


To go from these into our Azz observable, which is just the tensor-polarized cross section over the unpolarized cross section, we need $\sigma_u = \frac{1}{3}(\sigma_m^0 + \sigma_m^+ + \sigma_m^-)$ and $\sigma_p^0 = \frac{1}{3}(\sigma_m^+ + \sigma_m^- - 2\sigma_m^0 )$ such that


$A_{zz} = \frac{\sigma_p^0 - \sigma_u}{\sigma_u} $


$A_{zz} = \frac{\frac{1}{3}(\sigma_m^+ + \sigma_m^- - 2\sigma_m^0 ) - \frac{1}{3}(\sigma_m^0 + \sigma_m^+ + \sigma_m^-)}{\sigma_u}$


$A_{zz} = \frac{1}{3}\frac{(\sigma_m^+ - \sigma_m^+) + (\sigma_m^- - \sigma_m^-) + (-2\sigma_m^0 - \sigma_m^0)}{\sigma_u}$


$A_{zz} = \frac{-3}{3}\frac{\sigma_m^0}{\sigma_u}$


$A_{zz} = -\frac{\sigma_m^0}{\sigma_u}$


$A_{zz} = -r(0,k) \frac{}{}$