Difference between revisions of "Elong-15-05-07"

From HallCWiki
Jump to navigationJump to search
 
(12 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
Going back through the literature, the NIKHEF measurements (for instance [http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.82.3755 the Bouwhuis measurement]) define the polarized D(e,e'd) cross section as
 
Going back through the literature, the NIKHEF measurements (for instance [http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.82.3755 the Bouwhuis measurement]) define the polarized D(e,e'd) cross section as
  
<math>\sigma = \sigma_0\left[ 1 + \frac{A_d^T P_{zz}}{\sqrt{2}} \right]</math>
+
$$\sigma = \sigma_0\left[ 1 + \frac{A_d^T P_{zz}}{\sqrt{2}} \right]$$
  
 
where
 
where
  
<math> A^T_d = \sum_{i=0}^{2}d_{2i}T_{2i}</math>
+
$$ A^T_d = \sum_{i=0}^{2}d_{2i}T_{2i}$$
  
 
and
 
and
  
<math> d_{20} = \frac{3 \cos^2 \theta^* -1}{2},~~d_{21} = -\sqrt{\frac{3}{2}}\sin2\theta^*\cos\phi^*,~~d_{22}=\sqrt{\frac{3}{2}}\sin^2\theta^*\cos 2\phi^*</math>
+
$$ d_{20} = \frac{3 \cos^2 \theta^* -1}{2},~~d_{21} = -\sqrt{\frac{3}{2}}\sin2\theta^*\cos\phi^*,~~d_{22}=\sqrt{\frac{3}{2}}\sin^2\theta^*\cos 2\phi^*$$
  
where <math>\theta^*</math> and <math>\phi^*</math> are in the frame where the <math>z</math> axis is along the <math>\vec{q}</math> (which for us is ~70deg from the beamline) and the <math>x</math> axis is perpendicular to <math>z</math> in the scattering plane. They take the same definitions given by [http://www.sciencedirect.com/science/article/pii/0003491686901739 Donnely and Raskin]:
+
where $\theta^*$ and $\phi^*$ are in the frame where the $z$ axis is along the $\vec{q}$ (which for us is ~70deg from the beamline) and the $x$ axis is perpendicular to $z$ in the scattering plane. They take the same definitions given by [http://www.sciencedirect.com/science/article/pii/0003491686901739 Donnely and Raskin]:
  
 
[[Image:2015-05-08-coordinate-sys.png|400px]]
 
[[Image:2015-05-08-coordinate-sys.png|400px]]
  
If I'm understanding that correctly, then for us <math>\theta^* = \theta_q = 70^{\circ}</math> and <math>\phi^* = 0^{\circ}</math> since our magnetic field will be oriented along the beamline.
+
If I'm understanding that correctly, then for us $\theta^* = \theta_q = 70^{\circ}$ and $\phi^* = 0^{\circ}$ since our magnetic field will be oriented along the beamline.
  
If that's the case, the <math>d_{21}\approx -0.787,~~d_{22}\approx 1.08~~</math> and <math>d_{20} \approx -0.3245</math>.
+
If that's the case, the $d_{21}\approx -0.787,~~d_{22}\approx 1.08~~$ and $d_{20} \approx -0.3245$.
  
Rearranging their top equation to get to what we measure as <math>A_{zz} = \frac{2}{P_{zz}}\left( \frac{\sigma}{\sigma_0} - 1 \right)</math>,
+
Rearranging their top equation to get to what we measure as $A_{zz} = \frac{2}{P_{zz}}\left( \frac{\sigma}{\sigma_0} - 1 \right)$,
  
<math>A_{zz} = \sqrt{2}\left[ \frac{\sqrt{2}}{P_{zz}}\left( \frac{\sigma}{\sigma_0}-1\right) \right] = \left[ (-0.3245) T_{20} -0.787 T_{21} + 1.08 T_{22}\right] \sqrt{2}</math>
+
$A_{zz} = \sqrt{2}\left[ \frac{\sqrt{2}}{P_{zz}}\left( \frac{\sigma}{\sigma_0}-1\right) \right] = \left[ (-0.3245) T_{20} -0.787 T_{21} + 1.08 T_{22}\right] \sqrt{2}$
  
<math> A_{zz} = -0.458 T_{20} - 1.113T_{21} + 1.53T_{22}</math>.
+
$ A_{zz} = -0.458 T_{20} - 1.113T_{21} + 1.53T_{22}$.
  
 
The error from this would propagate to
 
The error from this would propagate to
  
<math> \delta  T_{20}^{stat} = \frac{\delta 2.18\cdotA_{zz}^{stat}}</math>
+
$ \delta  T_{20}^{stat} = 2.18\cdot \delta  A_{zz}^{stat}$
  
<math> \delta  T_{20}^{sys} =\sqrt{ \left(2.18\cdot \delta A_{zz}^{sys}\right)^2 + \left(2.42\cdot\delta T_{21}\right)^2 +  \left(3.33\cdot\delta T_{22}\right)^2  }</math>.
+
$ \delta  T_{20}^{sys} =\sqrt{ \left(2.18\cdot \delta A_{zz}^{sys}\right)^2 + \left(2.42\cdot\delta T_{21}\right)^2 +  \left(3.33\cdot\delta T_{22}\right)^2  }$.
  
Looking at the world data for <math>T_{21}</math> and <math>T_{22}</math>,
+
Looking at the world data for $T_{21}$ and $T_{22}$,
  
 
{| border="1" style="text-align:center;"
 
{| border="1" style="text-align:center;"
Line 42: Line 42:
 
|}
 
|}
  
 +
Overlaying the plots on top of each other so they both read in GeV<sup>2</sup> looks like
  
I estimated the following uncertainties for T21 and T22:
+
[[Image:2015-05-08-t21-all.png||450px]] [[Image:2015-05-08-t22-all.png||450px]]
 
 
{| border="1" style="text-align:center;"
 
! <math>Q^2</math> GeV<sup>2</sup> !! <math>dT_{21}</math> !! <math>dT_{21}</math>
 
|-
 
| 0.2 || 0.99E-02 || 1.92E-02
 
|-
 
| 0.3 || 4.49E-02 || 2.00E-02
 
|-
 
| 0.7 || 1.00E-01 || 5.00E-02
 
|-
 
| 1.5 || 1.00E-01 || 7.19E-02
 
|-
 
| 1.8 || 1.00E-01 || 8.10E-02
 
|}
 
 
 
Putting all of this together yields the following plot, where the inner bars are statistical and outter are total.
 
  
 +
In discussions with Doug, a reasonable uncertainty on T21 and T22 would be 10%. This was included in the systematics band, along with systematics from Azz, and is shown below.
  
[[Image:2015-05-07-t20-update.png]]
+
[[Image:2015-05-07-t20-update.png|900px]]

Latest revision as of 13:43, 18 October 2023

Going back through the literature, the NIKHEF measurements (for instance the Bouwhuis measurement) define the polarized D(e,e'd) cross section as

$$\sigma = \sigma_0\left[ 1 + \frac{A_d^T P_{zz}}{\sqrt{2}} \right]$$

where

$$ A^T_d = \sum_{i=0}^{2}d_{2i}T_{2i}$$

and

$$ d_{20} = \frac{3 \cos^2 \theta^* -1}{2},~~d_{21} = -\sqrt{\frac{3}{2}}\sin2\theta^*\cos\phi^*,~~d_{22}=\sqrt{\frac{3}{2}}\sin^2\theta^*\cos 2\phi^*$$

where $\theta^*$ and $\phi^*$ are in the frame where the $z$ axis is along the $\vec{q}$ (which for us is ~70deg from the beamline) and the $x$ axis is perpendicular to $z$ in the scattering plane. They take the same definitions given by Donnely and Raskin:

2015-05-08-coordinate-sys.png

If I'm understanding that correctly, then for us $\theta^* = \theta_q = 70^{\circ}$ and $\phi^* = 0^{\circ}$ since our magnetic field will be oriented along the beamline.

If that's the case, the $d_{21}\approx -0.787,~~d_{22}\approx 1.08~~$ and $d_{20} \approx -0.3245$.

Rearranging their top equation to get to what we measure as $A_{zz} = \frac{2}{P_{zz}}\left( \frac{\sigma}{\sigma_0} - 1 \right)$,

$A_{zz} = \sqrt{2}\left[ \frac{\sqrt{2}}{P_{zz}}\left( \frac{\sigma}{\sigma_0}-1\right) \right] = \left[ (-0.3245) T_{20} -0.787 T_{21} + 1.08 T_{22}\right] \sqrt{2}$

$ A_{zz} = -0.458 T_{20} - 1.113T_{21} + 1.53T_{22}$.

The error from this would propagate to

$ \delta T_{20}^{stat} = 2.18\cdot \delta A_{zz}^{stat}$

$ \delta T_{20}^{sys} =\sqrt{ \left(2.18\cdot \delta A_{zz}^{sys}\right)^2 + \left(2.42\cdot\delta T_{21}\right)^2 + \left(3.33\cdot\delta T_{22}\right)^2 }$.

Looking at the world data for $T_{21}$ and $T_{22}$,

Garcon (1992) Ferro-Luzzi (1996) Abbott (2000)
2015-05-08-t21-2.png 2015-05-08-t21-1.png
2015-05-08-t22-1.png 2015-05-08-t22-2.png 2015-05-08-t22-3.png

Overlaying the plots on top of each other so they both read in GeV2 looks like

2015-05-08-t21-all.png 2015-05-08-t22-all.png

In discussions with Doug, a reasonable uncertainty on T21 and T22 would be 10%. This was included in the systematics band, along with systematics from Azz, and is shown below.

2015-05-07-t20-update.png