Difference between revisions of "Elong-14-04-16"

From HallCWiki
Jump to navigationJump to search
Line 44: Line 44:
 
Now, let's look at each of these a bit more indepth according to their angular momentum components
 
Now, let's look at each of these a bit more indepth according to their angular momentum components
  
{|border="1px" align="center" cellpadding="10" cellspacing="0"
+
{|class="wikitable" border="1px" align="center" cellpadding="10" cellspacing="0" style="text-align:center;"
 
! State !! <math>J</math> !! <math>m_j</math>  !! <math>L</math> !! <math>m_l</math> !! <math>S</math> !! <math>m_s</math>
 
! State !! <math>J</math> !! <math>m_j</math>  !! <math>L</math> !! <math>m_l</math> !! <math>S</math> !! <math>m_s</math>
 +
|-
 +
| <math>|\uparrow \uparrow></math> (S-wave, 96%) || 1 || +1<br>0<br>-1 || 0 || 0<br>0<br>0 || 1 || +1<br>0<br>-1
 
|-
 
|-
| <math>|\uparrow \uparrow></math> (S-wave, 96%) || 1 || +1 || 0 || 0 || 1 || +1
+
| <math>|\downarrow \downarrow></math> (D-wave, 4%) || 1 || +1<br>+1<br>0<br>+1<br>0<br>-1<br>-1<br>0<br>+1 || 2 || +2<br>+1<br>+1<br>0<br>0<br>0<br>-1<br>-1<br>-2 || 1 || -1<br>0<br>-1<br>+1<br>0<br>-1<br>0<br>+1<br>+1
|-
 
| <math>|\uparrow \uparrow></math> (S-wave, 96%) || 1 ||  0 || 0 || 0 || 1 ||  0
 
|-
 
| <math>|\uparrow \uparrow></math> (S-wave, 96%) || 1 || -1 || 0 || 0 || 1 || -1
 
|-
 
|
 
|-
 
| <math>|\downarrow \downarrow></math> (D-wave, 4%) || 1 || +1 || 2 || +2 || 1 || -1
 
|-
 
| <math>|\downarrow \downarrow></math> (D-wave, 4%) || 1 || +1 || 2 || +1 || 1 ||  0
 
|-
 
| <math>|\downarrow \downarrow></math> (D-wave, 4%) || 1 ||  0 || 2 || +1 || 1 || -1
 
|-
 
| <math>|\downarrow \downarrow></math> (D-wave, 4%) || 1 || +1 || 2 || 0  || 1 || +1
 
|-
 
| <math>|\downarrow \downarrow></math> (D-wave, 4%) || 1 ||  0 || 2 || 0  || 1 ||  0
 
|-
 
| <math>|\downarrow \downarrow></math> (D-wave, 4%) || 1 || -1 || 2 || 0  || 1 || -1
 
|-
 
| <math>|\downarrow \downarrow></math> (D-wave, 4%) || 1 || -1 || 2 || -1 || 1 ||  0
 
|-
 
| <math>|\downarrow \downarrow></math> (D-wave, 4%) || 1 ||  0 || 2 || -1 || 1 || +1
 
|-
 
| <math>|\downarrow \downarrow></math> (D-wave, 4%) || 1 || +1 || 2 || -2 || 1 || +1
 
 
|-
 
|-
 
|}
 
|}

Revision as of 13:37, 18 April 2014

Deuteron Shape

From the video make by S.C. Pieper, et al., I extracted the tensor and vector polarization frames and made repeating videos of each. When we vector-polarize or tensor-polarize, the probability densities for the deuteron look like:

Vector Tensor
2014-04-16-vector.gif 2014-04-16-tensor.gif

Tensor Polarization Relation to Vector Polarization

Tensor polarization is related to the vector polarization by <math>P_z=2-\sqrt{4-3P_{zz}^2}</math>

2014-04-16-tensor-vector-plot.png

Deuteron States

From basic quantum mechanics, we know that the possible states for 2 nucleons are

the isospin singlet with S=0:

<math>|\uparrow \downarrow> - |\downarrow \uparrow></math> with <math>m_s=0</math>, <math>L=1</math>

and the isospin triplet with S=1:

<math>|\uparrow \uparrow></math> with <math>m_s=+1</math>, <math>L=0</math>
<math>|\uparrow \downarrow> + |\downarrow \uparrow></math> with <math>m_s=0</math>, <math>L=1</math>
<math>|\downarrow \downarrow></math> with <math>m_s=-1</math>, <math>L=2</math>

For the deuteron, <math>J=1</math> and <math>P=+1</math>. This kills both of the <math>m_s=0</math> states, since they cannot simultaneously have <math>J=1</math> and <math>P=+1</math> since <math>P=(-1)^L</math>.

This leaves only two possible states:

<math>|\uparrow \uparrow></math> with <math>m_s=+1</math>, <math>L=0</math>
<math>|\downarrow \downarrow></math> with <math>m_s=-1</math>, <math>L=2</math>

Angular Momentum Analysis

Now, let's look at each of these a bit more indepth according to their angular momentum components

State <math>J</math> <math>m_j</math> <math>L</math> <math>m_l</math> <math>S</math> <math>m_s</math>
\uparrow \uparrow></math> (S-wave, 96%) 1 +1
0
-1
0 0
0
0
1 +1
0
-1
\downarrow \downarrow></math> (D-wave, 4%) 1 +1
+1
0
+1
0
-1
-1
0
+1
2 +2
+1
+1
0
0
0
-1
-1
-2
1 -1
0
-1
+1
0
-1
0
+1
+1