Difference between revisions of "Elong-15-05-07"

From HallCWiki
Jump to navigationJump to search
Line 5: Line 5:
 
where
 
where
  
<math> A^T_d = \sum_{i=0}^{2}d_{2i}T_{21}</math>
+
<math> A^T_d = \sum_{i=0}^{2}d_{2i}T_{2i}</math>
  
 
and
 
and
  
<math> d_{20} = \frac{3 \cos^2 \theta^* -1}{2},~~d_21 = -\sqrt{\frac{3}{2}}\sin2\theta^*\cos\phi^*,~~d_{22}=\sqrt{\frac{3}{2}}\sin^2\theta^*\cos 2\phi^*</math>
+
<math> d_{20} = \frac{3 \cos^2 \theta^* -1}{2},~~d_{21} = -\sqrt{\frac{3}{2}}\sin2\theta^*\cos\phi^*,~~d_{22}=\sqrt{\frac{3}{2}}\sin^2\theta^*\cos 2\phi^*</math>
  
 
where <math>\theta^*</math> and <math>\phi^*</math> are in the frame where the <math>z</math> axis is along the <math>\vec{q}</math> (which for us is ~70deg from the beamline) and the <math>x</math> axis is perpendicular to <math>z</math> in the scattering plane. They take the same definitions given by [http://www.sciencedirect.com/science/article/pii/0003491686901739 Donnely and Raskin]:
 
where <math>\theta^*</math> and <math>\phi^*</math> are in the frame where the <math>z</math> axis is along the <math>\vec{q}</math> (which for us is ~70deg from the beamline) and the <math>x</math> axis is perpendicular to <math>z</math> in the scattering plane. They take the same definitions given by [http://www.sciencedirect.com/science/article/pii/0003491686901739 Donnely and Raskin]:
Line 19: Line 19:
 
If that's the case, the <math>d_{21}\approx -0.787,~~d_{22}\approx 1.08~~</math> and <math>d_{20} \approx -0.3245</math>.
 
If that's the case, the <math>d_{21}\approx -0.787,~~d_{22}\approx 1.08~~</math> and <math>d_{20} \approx -0.3245</math>.
  
<hr>
+
Rearranging their top equation to get to what we measure as <math>A_{zz} = \frac{2}{P_{zz}}\left( \frac{\sigma}{\sigma_0} - 1 \right)</math>,
 +
 
 +
<math>A_{zz} = \sqrt{2}\left[ \frac{\sqrt{2}}{P_{zz}}\left( \frac{\sigma}{\sigma_0}-1\right) \right] = \left[ (-0.3245) T_{20} -0.787 T_{21} + 1.08 T_{22}\right] \sqrt{2}</math>
 +
 
 +
<math> A_{zz} = -0.458 T_{20} - 1.113T_{21} + 1.53T_{22}</math>.
 +
 
 +
The error from this would propagate to
  
('''Note: Below here, I haven't yet included T21 and T22. This is still in progress, so expect error bars to grow.''')
+
<math> \delta  T_{20}^{stat} = \frac{\delta A_{zz}^{stat}}{0.458}</math>
  
Rearranging their top equation to get to what we measure as <math>A_{zz} = \frac{2}{P_{zz}}\left( \frac{\sigma}{\sigma_0} - 1 \right)</math>,
+
<math> \delta  T_{20}^{sys} =\sqrt{ \left(\frac{\delta A_{zz}^{sys}}{0.458}\right)^2 + \left(2.42\cdot\delta T_{21}\right)^2 +  \left(3.33\cdot\delta T_{22}\right)^2  }</math>.
 +
 
 +
Looking at the world data for <math>T_{21}</math> and <math>T_{22}</math>,
 +
 
 +
[[Image:2015-05-08-t21-1.png]] [[Image:2015-05-08-t21-2.png]]
 +
 
 +
[[Image:2015-05-08-t22-1.png]] [[Image:2015-05-08-t22-2.png]] [[Image:2015-05-08-t22-3.png]],
 +
 
 +
I estimated the following uncertainties for T21 and T22:
 +
 
 +
{| border="1" style="text-align:center;"
 +
! <math>Q^2</math> !! <math>dT_{21}</math> !! <math>dT_{21}</math>
 +
|-
 +
| 0.2 || 0.99E-02 || 1.92E-02
 +
|-
 +
| 0.3 || 4.49E-02 || 2.00E-02
 +
|-
 +
| 0.7 || 1.00E-01 || 5.00E-02
 +
|-
 +
| 1.5 || 1.00E-01 || 7.19E-02
 +
|-
 +
| 1.8 || 1.00E-01 || 8.10E-02
 +
|}
  
<math>A_{zz} = \sqrt{2}\left[ \frac{\sqrt{2}}{P_{zz}}\left( \frac{\sigma}{\sigma_0}-1\right) \right] = \left[ (-0.3245) T_{20} \right] \sqrt{2}</math>
 
  
<math> A_{zz} = -0.458 T_{20}</math>
 
  
and
 
  
<math> \delta  T_{20} = \frac{\delta A_{zz}}{0.458}</math>.
 
  
If that's the case, then our uncertainties ([[Elong-15-05-06 | which previously were calculated as <math>\delta T_{20} = \sqrt{2} \delta A_{zz}</math>]]) now look like as below.
 
  
 
[[Image:2015-05-07-t20-update.png]]
 
[[Image:2015-05-07-t20-update.png]]

Revision as of 13:52, 8 May 2015

Going back through the literature, the NIKHEF measurements (for instance the Bouwhuis measurement) define the polarized D(e,e'd) cross section as

<math>\sigma = \sigma_0\left[ 1 + \frac{A_d^T P_{zz}}{\sqrt{2}} \right]</math>

where

<math> A^T_d = \sum_{i=0}^{2}d_{2i}T_{2i}</math>

and

<math> d_{20} = \frac{3 \cos^2 \theta^* -1}{2},~~d_{21} = -\sqrt{\frac{3}{2}}\sin2\theta^*\cos\phi^*,~~d_{22}=\sqrt{\frac{3}{2}}\sin^2\theta^*\cos 2\phi^*</math>

where <math>\theta^*</math> and <math>\phi^*</math> are in the frame where the <math>z</math> axis is along the <math>\vec{q}</math> (which for us is ~70deg from the beamline) and the <math>x</math> axis is perpendicular to <math>z</math> in the scattering plane. They take the same definitions given by Donnely and Raskin:

2015-05-08-coordinate-sys.png

If I'm understanding that correctly, then for us <math>\theta^* = \theta_q = 70^{\circ}</math> and <math>\phi^* = 0^{\circ}</math> since our magnetic field will be oriented along the beamline.

If that's the case, the <math>d_{21}\approx -0.787,~~d_{22}\approx 1.08~~</math> and <math>d_{20} \approx -0.3245</math>.

Rearranging their top equation to get to what we measure as <math>A_{zz} = \frac{2}{P_{zz}}\left( \frac{\sigma}{\sigma_0} - 1 \right)</math>,

<math>A_{zz} = \sqrt{2}\left[ \frac{\sqrt{2}}{P_{zz}}\left( \frac{\sigma}{\sigma_0}-1\right) \right] = \left[ (-0.3245) T_{20} -0.787 T_{21} + 1.08 T_{22}\right] \sqrt{2}</math>

<math> A_{zz} = -0.458 T_{20} - 1.113T_{21} + 1.53T_{22}</math>.

The error from this would propagate to

<math> \delta T_{20}^{stat} = \frac{\delta A_{zz}^{stat}}{0.458}</math>

<math> \delta T_{20}^{sys} =\sqrt{ \left(\frac{\delta A_{zz}^{sys}}{0.458}\right)^2 + \left(2.42\cdot\delta T_{21}\right)^2 + \left(3.33\cdot\delta T_{22}\right)^2 }</math>.

Looking at the world data for <math>T_{21}</math> and <math>T_{22}</math>,

2015-05-08-t21-1.png 2015-05-08-t21-2.png

2015-05-08-t22-1.png 2015-05-08-t22-2.png 2015-05-08-t22-3.png,

I estimated the following uncertainties for T21 and T22:

<math>Q^2</math> <math>dT_{21}</math> <math>dT_{21}</math>
0.2 0.99E-02 1.92E-02
0.3 4.49E-02 2.00E-02
0.7 1.00E-01 5.00E-02
1.5 1.00E-01 7.19E-02
1.8 1.00E-01 8.10E-02




2015-05-07-t20-update.png